Explanation:
It is given that,
The volume of a right circular cylindrical, 
We know that the volume of the cylinder is given by :

............(1)
The upper area is given by :



For maximum area, differentiate above equation wrt r such that, we get :



r = 1.83 m
Dividing equation (1) with r such that,



Hence, this is the required solution.
The answer to your question is OPTION B
Answer:
The direction of the B-field is in the +y-direction.
Explanation:
The corresponding formula is

This means, we should use right-hand rule.
Our index finger is pointed towards +x-direction (direction of velocity),
our middle finger should point towards the direction of the B-field,
and our thumb should point towards the +z-direction (direction of the force).
Since our middle finger in this situation points towards +y-direction, the B-field should be in +y-direction.

Answer:
They have a dual wave-particle nature.
Explanation:
Electromagnetic waves consist of periodic oscillations of electric and magnetic field in a plane perpendicular to the direction of motion of the wave (in fact, they are also classified as transverse waves).
Electromagnetic waves have a wave nature, however they also have particle nature - in fact, it has been proved in some experiment (e.g. photoelectric effect) that in some conditions they act as packets of particles - called photons. Therefore, the option
They have a dual wave-particle nature.
is correct.
Other options are wrong because:
They are all invisible. --> False because visible light (which is part of the electromagnetic spectrum, so they are electromagnetic waves) is visible
They can only travel without a medium. --> False because they can also travel in a vacuum
They are slower than sound waves. --> False because they travel much faster (they travel at the speed of light in a vacuum,
, while sound travels at 343 m/s in air, for instance)
Answer:
Fundamental quantities are the base quantities of a unit system, and they are defined independent of the other...
• Derived quantities are based on fundamental quantities, and they can be given in terms of fundamental quantities.
• In SI units, derived units are often given names of people such as Newton and Joule.
Explanation: