1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlladinOne [14]
3 years ago
11

(8x - 5)(7x-8) Find the product

Mathematics
2 answers:
Tju [1.3M]3 years ago
4 0

Answer:

56x^2−99x+40

Step-by-step explanation:

 Evaluate (8x−5)(7x−8)

Apply the distributive property by multiplying each term of 8x−5 by each term of 7x−8.

56x^2−64x−35x+40

Combine −64x and −35x to get −99x.

56x^2−99x+40

marissa [1.9K]3 years ago
3 0

Answer:

x=−3

Step-by-step explanation:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :  7*x-8-(8*x-5)=0

Pull out like factors :  -x - 3  =   -1 • (x + 3)

Solve  :    -x-3 = 0  

Add  3  to both sides of the equation :    -x = 3

Multiply both sides of the equation by (-1) :  x = -3

You might be interested in
Create a data set that has six values, a mean of 7, and a range of 15
Nezavi [6.7K]
12,13,14,15,16,1 is the six values
5 0
4 years ago
Read 2 more answers
Use the Divergence Theorem to evaluate S F · dS, where F(x, y, z) = z2xi + y3 3 + sin z j + (x2z + y2)k and S is the top half of
kifflom [539]

Looks like we have

\vec F(x,y,z)=z^2x\,\vec\imath+\left(\dfrac{y^3}3+\sin z\right)\,\vec\jmath+(x^2z+y^2)\,\vec k

which has divergence

\nabla\cdot\vec F(x,y,z)=\dfrac{\partial(z^2x)}{\partial x}+\dfrac{\partial\left(\frac{y^3}3+\sin z\right)}{\partial y}+\dfrac{\partial(x^2z+y^2)}{\partial z}=z^2+y^2+x^2

By the divergence theorem, the integral of \vec F across S is equal to the integral of \nabla\cdot\vec F over R, where R is the region enclosed by S. Of course, S is not a closed surface, but we can make it so by closing off the hemisphere S by attaching it to the disk x^2+y^2\le1 (call it D) so that R has boundary S\cup D.

Then by the divergence theorem,

\displaystyle\iint_{S\cup D}\vec F\cdot\mathrm d\vec S=\iiint_R(x^2+y^2+z^2)\,\mathrm dV

Compute the integral in spherical coordinates, setting

\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\rho\cos\varphi\end{cases}\implies\mathrm dV=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi

so that the integral is

\displaystyle\iiint_R(x^2+y^2+z^2)\,\mathrm dV=\int_0^{\pi/2}\int_0^{2\pi}\int_0^1\rho^4\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=\frac{2\pi}5

The integral of \vec F across S\cup D is equal to the integral of \vec F across S plus the integral across D (without outward orientation, so that

\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\frac{2\pi}5-\iint_D\vec F\cdot\mathrm d\vec S

Parameterize D by

\vec s(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath

with 0\le u\le1 and 0\le v\le2\pi. Take the normal vector to D to be

\dfrac{\partial\vec s}{\partial v}\times\dfrac{\partial\vec s}{\partial u}=-u\,\vec k

Then we have

\displaystyle\iint_D\vec F\cdot\mathrm d\vec S=\int_0^{2\pi}\int_0^1\left(\frac{u^3}3\sin^3v\,\vec\jmath+u^2\sin^2v\,\vec k\right)\times(-u\,\vec k)\,\mathrm du\,\mathrm dv

=\displaystyle-\int_0^{2\pi}\int_0^1u^3\sin^2v\,\mathrm du\,\mathrm dv=-\frac\pi4

Finally,

\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\frac{2\pi}5-\left(-\frac\pi4\right)=\boxed{\frac{13\pi}{20}}

6 0
4 years ago
What are the x-intercepts for the graph of y=3(x - 2)(x+6)?
WARRIOR [948]

Answer:

A

Step-by-step explanation:

Put Y=0

0 = 3(x - 2)(x + 6) \\

Now

x - 2 = 0 \\ x = 2 \\  \\  \\ x + 6 = 0 \\ x =  - 6 \\  \\

so A is right option

5 0
3 years ago
Brainliest to whoever gets it right first
Inga [223]
I just guessed and it is 108
3 0
3 years ago
I don’t know the answer to this question help me
Tresset [83]

Answer:

x+74

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • I need help whats the answer to this <br> 49-25x^2
    14·2 answers
  • Assume each newborn baby had a probability of approximately 0.54 of being female and 0.46 of being male. For a family of four ch
    7·1 answer
  • Eliza’s backpack weighs 18 7/9 pounds with her math book in it. Without her math book, her backpack weighs 14 ⅞ pounds. How much
    12·2 answers
  • ULICU OSGUSIETI
    6·1 answer
  • Can you please give me a step by step? thank you!
    10·2 answers
  • Please answer asp worth 16 points
    13·1 answer
  • Y=2x^2+12x+14 in vertex form
    10·1 answer
  • Thank you if you answer &lt;3
    11·1 answer
  • Find the value of n<br><br><br><br><br>1) 15/40 =n/3​
    14·1 answer
  • Compare using &gt;, =, or &lt;.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!