Answer:
The hydrogen spectrum is an important piece of evidence to show the quantized electronic structure of an atom. ... It results in the emission of electromagnetic radiation initiated by the energetically excited hydrogen atoms. The hydrogen emission spectrum comprises radiation of discrete frequencies.
The spectrum starts with red light, with a wavelength of 700 nanometers (7,000 angstroms), at the top. ... It spans the range of visible light colours, including orange and yellow and green, and ends at the bottom with blue and violet colours with a wavelength of 400 nm (4,000 angstroms).
Explanation:
Hydrogen molecules are first broken up into hydrogen atoms (hence the atomic hydrogen emission spectrum) and electrons are then promoted into higher energy levels. Suppose a particular electron is excited into the third energy level. It would tend to lose energy again by falling back down to a lower level.
The spectrum of the Sun appears as a continuous spectrum and is frequently represented as shown below. This type of spectrum is called an emission spectrum because what you are seeing is the direct radiation emitted by the source.
0.1/200= 0.0005 , u need to dissolve .0005 grams of sugar
A: Trial 1, because the average rate of the reaction is lower.
The rate of reaction is the speed with which reactants are converted into products. It is also the rate at which reactants disappear and products appear. The higher the rate of reaction, the greater the amount of product formed in a reaction.
If we look at the graph, we will realize that trial 1 produces a lesser amount of product than trial 2. This implies that the average rate of the reaction in trial 1 is lower than in trial 2.
Lower average rate of reaction implies lower concentration of the reactants since the rate of reaction depends on the concentration of reactants.
Hence trial 1 has a lower concentration of reactants because the average rate of the reaction is lower.