Answer:
0.2598 M
Explanation:
Molarity is mol/L, so we have to convert the grams to moles and the mL to L. To convert between grams and moles you need the molar mass of the compound, which is 36.46g/mol.



Round to the lowest number of significant figures = 0.2598 M
The constant used for the absorption of heat by the sample in melting is
. Thus, option A is correct.
The chemical reaction has been defined as the energy in which the energy has been released or absorbed for the breaking of bonds in the reactants and the formation of product.
<h3>Constant for energy absorbed</h3>
The energy has been absorbed in the melting of the copper sample. Thus, the sample has been converted from the solid to the liquid state.
The change in energy with the conversion in solid and liquid state has been termed as heat of fusion.
The energy has been absorbed by the system, thus it has been marked with the positive sign.
Therefore,
has been the constant used for the absorption of heat by the sample in melting. Thus, option A is correct.
Learn more about melting sample, here:
brainly.com/question/8828503
Answer:
B
Explanation:
the candle is hot so the first energy form should be heat. u could now just eliminate the rest but for further notice. the heat melts the wax in the candle, which is a physical change but also the thread is burning out which is a chemical change then light follows
Answer:
Explanation:
Given that
d= 35 μm ,yield strength = 163 MPa
d= 17 μm ,yield strength = 192 MPa
As we know that relationship between diameter and yield strength


d = diameter
K =Constant

So now by putting the values
d= 35 μm ,yield strength = 163 MPa
------------1
d= 17 μm ,yield strength = 192 MPa
------------2
From equation 1 and 2

K=394.53
By putting the values of K in equation 1


Now when d= 12 μm


I believe the correct response is A. At higher elevations it would take less time to hard boil an egg, because there is less atmospheric pressure.