Answer:
Length = 12 m, Width = 8 m
Step-by-step explanation:
Let the width of the rectangle is b.
Length, l = 4+b
The perimeter of the rectangle = 40 m
We know that,
Perimeter of rectangle = 2(l+b)
2(4+b+b) = 40
4+2b = 20
Subtract 2 from boths sides,
2b = 16
b = 8
Width = 8 m
Length = 4+8 = 12 m
Hence, the length and the width of the rectangle is 12 m and 8 m respectively.
Answer:
Ada is correct.
Step-by-step explanation:
If you use the Pemdas rule, you know that you need to get rid of the brackets first by using distributive property of multiplication.
2(4x - 3) + 6
2(4x) - 2(3) + 6
8x - 6 + 6
8x + 0
8x
The y-value of the vertex is positive 3, as shown by the +3 on the right hand side of the equation, and the x-value is -1, from the (x+1)^2 (remember, when the number is inside the brackets, flip the sign) The vertex would be (-1, 3)
If you are looking for a rigorous answer (calculus), we must find the mininum point of the equation: f(x) = (x+1)^2 + 3 f
f'(x) = 2(x+1) = 2x + 2
2x + 2 = 0
x = -1
f(1) = (-1 + 1)^2 + 3
f(1) = 0 + 3 = 3
(-1, 3)
First we use sin(a+b)= sinacosb+sinbcosa
and cos(a+b)=cosa cosb -sinasinb
tan(x+pi/2)= sin(x+pi/2) / cos(x+pi/2)
and sin(x+pi/2) = sinxcospi/2 + sinpi/2cosx =cosx,
<span>cos(x+pi/2) = cosxcospi/2- sinxsinpi/2= - sinx,
</span> because <span>cospi/2 =0, </span>and <span>sinpi/2=1
</span><span>=tan(x+pi/2)= sin(x+pi/2) / cos(x+pi/2)= cosx / -sinx = -1/tanx = -cotx
</span>from where <span>tan(x+pi/2)=-cotx</span>