Answer:
Velocity
Explanation:
We finds that the winds are coming from the west at 15 miles per hour. This information shows the velocity of the wind. Since, velocity is a vector quantity. It has both magnitude and direction. 15 miles per hour shows the speed of wind and west shows the direction of wind motion.
Hence, the given information describes wind velocity.
If one of two interacting charges is doubled, the force between the charges will double.
Explanation:
The force between two charges is given by Coulomb's law

K=constant= 9 x 10⁹ N m²/C²
q1= charge on first particle
q2= charge on second particle
r= distance between the two charges
Now if the first charge is doubled,
we get 
F'= 2 F
Thus the force gets doubled.
Answer:
Option C. 210 J.
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Velocity (v) = 18 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Total Mechanical energy (ME) =?
Next, we shall determine the potential energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Height (h) = 12 m
Acceleration due to gravity (g) = 9.8 m/s²
Potential energy (PE) =?
PE = mgh
PE = 0.75 × 9.8 × 12
PE = 88.2 J
Next, we shall determine the kinetic energy of the plane. This can be obtained as follow:
Mass (m) = 0.75 Kg
Velocity (v) = 18 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 0.75 × 18²
KE = ½ × 0.75 × 324
KE = 121.5 J
Finally, we shall determine the total mechanical energy of the plane. This can be obtained as follow:
Potential energy (PE) = 88.2 J
Kinetic energy (KE) = 121.5 J
Total Mechanical energy (ME) =?
ME = PE + KE
ME = 88.2 + 121.5
ME = 209.7 J
ME ≈ 210 J
Therefore, the total mechanical energy of the plane is 210 J.
Voltage = Current (I) × Resistance (R)
V = 10 × 28.5 = 285v