R = U : I. U is in Voltage and I is in Ampère. That gives you R = 36 : 8 = 4,5 Ohm
<span>A tri-fold brochure has two parallel folds, splitting the brochure into three sections. Even when printed on low-weight paper, tri-folds can stand up easily, which makes them a great choice for displaying at conventions. You can fold both folds inwards so that the left and right sections of the brochure sit on top of one another, or you can have one fold inwards and the other outwards, to create an accordion effect, which looks very attractive.</span>
Here current is flowing through the copper wire so this shows that copper is good conductor of electricity.
It is having less resistance as it conducts the current easily
Now a rubber coating on it will protect us from electric shock
So this property shows that rubber is a bad conductor of electricity
It is having large electrical resistance due to which it will conduct no current
Rubber : - No transmittance of electricity
copper :- good transmittance of electricity
Answer:
TRUE
Explanation:
The answer is true.
Balance forces acting on a body will not change the motion of the body because the body experiences no net resultant force in one direction. When any body experiences equal forces with opposite directions, the net force or the resultant force experience by the body is zero.
In case of an unbalanced forces, there is a net force acting in one direction and so it causes the body to change in its state of motion in the direction of the net force.
Answer:
a)
b)
c)
Explanation:
a) The angular velocity is related to the centripetal acceleration by the formula
, which for our purposes we will write as:

Since <em>we want this acceleration to be 1.5 times that due to gravity</em>, for our values we will have:

b) 1 rpm (revolution per minute) is equivalent to an angle of
radians in 60 seconds:

Which means <em>we can use the conversion factor</em>:

So we have (multiplying by the conversion factor, which is 1, not affecting anything but transforming our units):

c) The centripetal force will be given by Newton's 2nd Law F=ma, so on the centripetal direction for our values we have:
