Answer:
(-2, -8)
x = -2
y = -8
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define systems</u>
13x - 6y = 22
x = y + 6
<u>Step 2: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: 13(y + 6) - 6y = 22
- Distribute 13: 13y + 78 - 6y = 22
- Combine like terms: 7y + 78 = 22
- Isolate <em>y</em> term: 7y = -56
- Isolate <em>y</em>: y = -8
<u>Step 3: Solve for </u><em><u>x</u></em>
- Define original equation: x = y + 6
- Substitute in <em>y</em>: x = -8 + 6
- Add: x = -2
Let's form the difference of the two expressions and see what we can learn.
(2y -x) -(2x -y) = 2y -x -2x +y = 3y -3x = 3(y -x)
Since y > x, this is positive, so 2y -x is greater than 2x -y.
Answer:
after 75 minutes
Step-by-step explanation:
The least common multiple (LCM) of 15 and 25 is 75. It can be found a couple of ways:
1. List the factors of each number and find the product of the unique ones:
15 = 3·5
25 = 5²
The LCM is 3·5² = 75.
__
2. Find the greatest common divisor (GCD) and divide the product of the numbers by that value. From the above list of factors, we see that 5 is the GCD of 15 and 25. Then the LCM is ...
15·25/5 = 75
__
Or, you can simply list multiples of each number and see what the smallest number is that is in both lists:
15, 30, 45, 60, <em>75</em>, 90
25, 50, <em>75</em>, 100
__
The two buses will appear together again after 75 minutes.
Answer:
La respuesta es 4
Step-by-step explanation:
La Ramon para esto es porque Como 3x4 son igual a 12 ebtonces por eso la respuesta es 4