Answer:

Step-by-step explanation:
Given that:

where;
the top vertex = (0,0,1) and the base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0)
As such , the region of the bounds of the pyramid is: (0 ≤ x ≤ 1-z, 0 ≤ y ≤ 1-z, 0 ≤ z ≤ 1)


![\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \ dz \ ( \dfrac{(1-z)^3}{3} \ y + \dfrac {(1-z)y^3)}{3}] ^{1-x}_{0}](https://tex.z-dn.net/?f=%5Ciiint_W%20%28x%5E2%2By%5E2%29%20%5C%20dx%20%5C%20dy%20%5C%20dz%20%3D%20%5Cint%20%5E1_0%20%20%5C%20dz%20%5C%20%20%28%20%5Cdfrac%7B%281-z%29%5E3%7D%7B3%7D%20%5C%20y%20%2B%20%5Cdfrac%20%7B%281-z%29y%5E3%29%7D%7B3%7D%5D%20%5E%7B1-x%7D_%7B0%7D)




9514 1404 393
Answer:
A. f^-1(x) = x³ -12
Step-by-step explanation:
The inverse function can be found by solving ...
x = f(y)
x = ∛(y +12) . . . . . use the definition of f(x)
x³ = y +12 . . . . . . . cube both sides to eliminate the radical
x³ -12 = y . . . . . . . add -12 to isolate the y-variable
f^-1(x) = x³ -12 . . . matches choice A
By the look of it the answer is yes
Answer:
2x
Step-by-step explanation:
Answer:
Acute angle
Step-by-step explanation:
Given that m<C =
, to find out the type of angle angle C is, evaluate the expression given by substituting x = 13, in the expression.
m<C = 
m<C = 
m<C = 
m<C = 76°
Acute angles are less than 90°.
m<C is less than 90°, therefore it is an acute angle.