Answer:
the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Explanation:
Given that;
weight of vehicle = 4000 lbs
we know that 1 kg = 2.20462
so
m = 4000 / 2.20462 = 1814.37 kg
Initial velocity
= 60 mph = 26.8224 m/s
Final velocity
= 30 mph = 13.4112 m/s
now we determine change in kinetic energy
Δk =
m(
² -
² )
we substitute
Δk =
×1814.37( (26.8224)² - (13.4112)² )
Δk =
× 1814.37 × 539.5808
Δk = 489500 Joules
we know that; 1 kilowatt hour = 3.6 × 10⁶ Joule
so
Δk = 489500 / 3.6 × 10⁶
Δk = 0.13597 ≈ 0.136 kWh
Therefore, the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Answer: option D
Explanation: students will need to make the ammeter a component built into their circuit so that electron flow through it to measure the current, by doing so, they have to connect the ammeter in series with the resistor hence making the same value of current flow through both the ammeter and the resistor.
The value of current on the ammeter is the value of current in the resistor which is the value of current flowing in the circuit as a whole.
The northern lights are shafts or curtains of colorful light that occasionally appear in the night sky. They are one of the numerous astronomical phenomena known as polar lights (aurora Polaris).This phenomenon may be observed in mars.
Earth's magnetic field directs electrons and protons from the sun to the poles, where they excite atmospheric gas molecules and cause them to glow, resulting in the aurora borealis and aurora australis, two nocturnal light displays. You might refer to it as the aurora Universalis on Mars. This is because Mars does not direct the energetic particles from the sun to its poles since it lacks an internal magnetic field. Today, researchers utilizing the MAVEN (Mars Atmosphere and Volatile Evolution) spacecraft find evidence for an aurora that may potentially cover the whole nightside of the planet. Venus lacks a magnetic field, thus it would not experience the same kind of nighttime aurora that we do.
To know more about aurora borealis go here:-
brainly.com/question/12757223
#SPJ4
Do you have a chart or something that goes with it?