The complete question in the attached figure
we have that
tan a=7/24 a----> III quadrant
cos b=-12/13 b----> II quadrant
sin (a+b)=?
we know that
sin(a + b) = sin(a)cos(b) + cos(a)sin(b<span>)
</span>
step 1
find sin b
sin²b+cos²b=1------> sin²b=1-cos²b----> 1-(144/169)---> 25/169
sin b=5/13------> is positive because b belong to the II quadrant
step 2
Find sin a and cos a
tan a=7/24
tan a=sin a /cos a-------> sin a=tan a*cos a-----> sin a=(7/24)*cos a
sin a=(7/24)*cos a------> sin²a=(49/576)*cos²a-----> equation 1
sin²a=1-cos²a------> equation 2
equals 1 and 2
(49/576)*cos²a=1-cos²a---> cos²a*[1+(49/576)]=1----> cos²a*[625/576]=1
cos²a=576/625------> cos a=-24/25----> is negative because a belong to III quadrant
cos a=-24/25
sin²a=1-cos²a-----> 1-(576/625)----> sin²a=49/625
sin a=-7/25-----> is negative because a belong to III quadrant
step 3
find sin (a+b)
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
sin a=-7/25
cos a=-24/25
sin b=5/13
cos b=-12/13
so
sin (a+b)=[-7/25]*[-12/13]+[-24/25]*[5/13]----> [84/325]+[-120/325]
sin (a+b)=-36/325
the answer issin (a+b)=-36/325
Because 1/2 ≠ 1/6.
We know that 1/6 < 1/2, so we can set up an equation to see how many copies are needed for them to be equal.
(1/6)x = 1/2
[(1/6)x] × 6 = [1/2] × 6
x = 6/2 = 3
This equation shows that 1/6 × 3 = 1/2, therefore we need 3 copies of 1/6 to equal 1 copy of 1/2.
Answer:
W = 4.95
Step-by-step explanation:
You want to start by writing down what you know, and forming a system of equations.
L= length W= width
2L+2W=14.7
L= 2.4
On the left side of the equation, you're adding all your side lengths, and on the right, is the total perimeter. (Also could be written L+L+W+W = 14.7)
You would then substitute L from the bottom equation into the top equation to get:
2(2.4) +2W=14.7
Solving:
4.8+2w=14.7
W= 4.95
To check your answer simply add all the sides together and make sure it equals your perimeter. You can also plug W and L back into the original equation.
B and c are the factors because they make the product
Answer:
1)a
2)d
3)b
4)c
Step-by-step explanation: