choices? i cant tell without choices
Answer:
The slope is 5/-2.
Step-by-step explanation:
Slope is y1-y2 over m1-m2 (rise over run). The first ordered pair is -2 (m1) and 11 (y1). We then subtract the second ordered pair (4 (m2) and -4 (y2)) from the first.
11 - (-4) = 11 + 4 = 15
-2 - 4 = -6
Remember, slope is rise over run (y over x), so the slope is 15/-6. Now, we must simplify. 15/-6 = 5/-2
Dean went wrong because he thought that slope was run over rise (x over y). If he had switched the two numbers, his answer would have been correct.
Answer:
n=15
Step-by-step explanation:
5(n+1)=2n+20
U start by expanding the first term which will give you 5n+5
Then after that u collect like terms giving u
5n-2n=20-5
Finally u evaluate it giving u
n=15
Answer:
a) Average velocity at 0.1 s is 696 ft/s.
b) Average velocity at 0.01 s is 7536 ft/s.
c) Average velocity at 0.001 s is 75936 ft/s.
Step-by-step explanation:
Given : If a ball is thrown straight up into the air with an initial velocity of 70 ft/s, its height in feet after t seconds is given by
.
To find : The average velocity for the time period beginning when t = 2 and lasting. a. 0.1 s.
, b. 0.01 s.
, c. 0.001 s.
Solution :
a) The average velocity for the time period beginning when t = 2 and lasting 0.1 s.





b) The average velocity for the time period beginning when t = 2 and lasting 0.01 s.





c) The average velocity for the time period beginning when t = 2 and lasting 0.001 s.




The question is incomplete, here is the complete question:
Recall that m(t) = m.(1/2)^t/h for radioactive decay, where h is the half-life. Suppose that a 500 g sample of phosphorus-32 decays to 356 g over 7 days. Calculate the half life of the sample.
<u>Answer:</u> The half life of the sample of phosphorus-32 is 
<u>Step-by-step explanation:</u>
The equation used to calculate the half life of the sample is given as:

where,
m(t) = amount of sample after time 't' = 356 g
= initial amount of the sample = 500 g
t = time period = 7 days
h = half life of the sample = ?
Putting values in above equation, we get:

Hence, the half life of the sample of phosphorus-32 is 