1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goshia [24]
3 years ago
13

Just #14 plz thanks!!!

Mathematics
1 answer:
ziro4ka [17]3 years ago
6 0
You can do this! You’re a smart person :) don’t ever give up
You might be interested in
PLEASE HELP ASAP
BaLLatris [955]

The value k needed for the transformation of f(x) to g(x) = f(k · x) is equal to 3.056.

<h3>How to find the find the dilation factor</h3>

In this problem we have the following relationship bewteen the two <em>quadratic</em> equations: g(x) = f(k · x), which means that for all y the following relationship between f(x) and g(x):

k = \frac{x_{g}}{x_{f}}

Let suppose that y = 3, then x_{f} = - 5.5 and x_{g} = - 1.8, then the value k is:

k = (- 5.5)/(- 1.8)

k = 3.056

The value k needed for the transformation of f(x) to g(x) = f(k · x) is equal to 3.056.

To learn more on transformations: brainly.com/question/11709244

#SPJ1

6 0
2 years ago
If alpha and beta are zeroes of polynomial fx = 4x2-5x-1. Pls answer full questiob
Ede4ka [16]
<h3>...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................</h3><h2>I like 15 yr old girls.</h2>

6 0
2 years ago
Select the correct answer.
kherson [118]

Answer:

d.2/6 has a repeating decimal form

3 0
3 years ago
What is the slope of the line that passes through the points (7.-12) and (-9,36)?​
REY [17]

Answer:

Step-by-step explanation:

m = slope where

m = rise / run

rise = y2 - y1  

run = x2 - x1

where  

the given point P1 = (7, -12)

and is in the form of (x1,y1)  

and

the given point P2 = (-9,36)  

is  in   the   form  of   (x2,y2)

then

m =  ( y2 - y1 ) / ( x2 - x1 )

m = ( 36 - (-12) ) / ( -9 -7 )

m = ( 36 + 12 ) /  ( - 16 )

m =  48 /  - 16

m = - 3

the slope is negative 3

slope = - 3

4 0
3 years ago
True or False<br> 5/2 + (- 2.5) is negative.
uranmaximum [27]
This is false, it is not negative because the answer is 0.
7 0
3 years ago
Read 2 more answers
Other questions:
  • Jonny has 64 apples and he wants to splite between 8 friends. how many would eat friend get
    10·1 answer
  • Which points are located in Quadrant l? Check all that apply. (0, 0) (1, 1) (7, 3) (5, 0) (8, 0) (1, 10)
    6·2 answers
  • Jemma is three times as old as Angie. Five years from now the sum of their ages will be 34 years. What are their present ages?
    13·2 answers
  • 80% as a fraction in simplest form
    8·1 answer
  • NEED THESE ANSWERS! Thanks!!
    8·1 answer
  • A plane is already 44 cm tall and it will grow in one centimeter every month let H be the plants height in centimeters after M m
    14·1 answer
  • Find the equation of the linear function represented by the table below in slope-intercept form
    7·1 answer
  • Help!!Find the y-intercept of the line on the graph.<br> Enter the correct answer.
    9·1 answer
  • What is the average rate of change for f(x) = 2x + 2 over the interval -1 &lt; x &lt;1
    14·2 answers
  • Which equation models the problem below if c represents the number of babies whose eyes are closed?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!