1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SCORPION-xisa [38]
4 years ago
15

I don’t get this at all can someone help?

Mathematics
1 answer:
aleksklad [387]4 years ago
5 0

Reasons (In order):

  1. Given
  2. Given
  3. Definition of a midpoint
  4. Reflexive property
  5. SAS
  6. CPCTC
You might be interested in
The equation y = 3x + 16 can be used to find the salary, y for a person with x years experience. How many years experience would
fgiga [73]
Y=106,000. 106,000=3x+16. 106,016=3x now divide.... 106,016÷3=x. _____ 35338.666667=x
5 0
3 years ago
Please help<br><br> Check answers
Law Incorporation [45]

Answer:

Number 8 the answer is 120

Number 10 answer is 115

Step-by-step explanation:

8. 180-60=120

it's because the straight line is 180 then you just need to solve it use this

10. 180-65=115

the reason same like number 8

Hope this answer can help you to solve the math problems

6 0
3 years ago
The circumference of a circle is 23π m. What is the area, in square meters? Express your answer in terms of \piπ
NARA [144]

Answer:

<h2>132.25π  m²</h2>

Step-by-step explanation:

The circumference of a circle is 23π

On the other hand, The circumference of a circle = 2×π×r ; where r is the radius.

then

by equating the last two expressions we get: 23π = 2πr then r = 23/2

then

the area = π × r² = (23/2)²×π = (132.25)×π

7 0
3 years ago
Read 2 more answers
F(x)=x^2-3x+18 how many distinct real number zeros does f have?
vampirchik [111]

Answer:

None of the distinct real number zeros the function have.

Step-by-step explanation:

Considering the function

f(x)=x^2-3x+18

The zeroes of a function are those values that touches the x-axis. In order to find those values we must

Set  f(x) = 0 in order to find those values

0=x^2-3x+18

\mathrm{Switch\:sides}

x^2-3x+18=0

\mathrm{Solve\:with\:the\:quadratic\:formula}

\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=-3,\:c=18:\quad x_{1,\:2}=\frac{-\left(-3\right)\pm \sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:18}}{2\cdot \:1}

x=\frac{-\left(-3\right)+\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:18}}{2\cdot \:1}

x=\frac{3+\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:18}}{2\cdot \:1}

As

3+\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:18}=3+\sqrt{63}i

so

x=\frac{3+\sqrt{63}i}{2\cdot \:1}

x=\frac{3+3\sqrt{7}i}{2}

x=\frac{3}{2}+\frac{3\sqrt{7}}{2}i

Similarly,

x=\frac{-\left(-3\right)-\sqrt{\left(-3\right)^2-4\cdot \:1\cdot \:18}}{2\cdot \:1}:\quad \frac{3}{2}-i\frac{3\sqrt{7}}{2}

\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}

x=\frac{3}{2}+i\frac{3\sqrt{7}}{2},\:x=\frac{3}{2}-i\frac{3\sqrt{7}}{2}

BUT, NONE OF THEM ARE REAL NUMBER ZEROS.

Therefore, none of the distinct real number zeros the function have.

5 0
4 years ago
PROVE THAT:<br><br>cos 20° - sin 20° = ​​ \sqrt{2}sin25°<br><br>​
Lemur [1.5K]

Answer:

See below.

Step-by-step explanation:

\cos(20)-\sin(20)=\sqrt{2}\sin(25)

First, use the co-function identity:

\sin(90-x)=\cos(x)

We can turn the second term into cosine:

\sin(20)=\sin(90-70)=\cos(70)

Substitute:

\cos(20)-\cos(70)=\sqrt{2}\sin(25)

Now, use the sum to product formulas. We will use the following:

\cos(x)-\cos(y)=-2\sin(\frac{x+y}{2})\sin(\frac{x-y}{2})

Substitute:

\cos(20)-\cos(70)=-2\sin(\frac{20+70}{2})\sin(\frac{20-70}{2})\\\cos(20)-\cos(70)  =-2\sin(45)\sin(-25)\\\cos(20)-\cos(70)=-2(\frac{\sqrt{2}}{2})\sin(-25)\\ \cos(20)-\cos(70)=-\sqrt{2}\sin(-25)

Use the even-odd identity:

\sin(-x)=-\sin(x)

Therefore:

\cos(20)-\cos(70)=-\sqrt{2}\sin(-25)\\\cos(20)-\cos(70)=-\sqrt{2}\cdot-\sin(25)\\\cos(20)-\cos(70)=\sqrt{2}\sin(25)

Replace the second term with the original term:

\cos(20)-\sin(20)=\sqrt{2}\sin(25)

Proof complete.

4 0
4 years ago
Other questions:
  • On this map, Oxford Street is perpendicular to_______ , and Rosewood Street is perpendicular to ________. Assume that the street
    13·1 answer
  • The sum of b and 11
    5·1 answer
  • I know it’s a lot to ask but can someone do the odd numbers
    10·1 answer
  • Find the new amount- Decrease 700 by 49%
    10·1 answer
  • What is triple a number , minus the sum of the number and six ?
    8·1 answer
  • How to explain 3,482,000,000 in scientific notation
    6·2 answers
  • Please, please, please, please help
    8·2 answers
  • What is the distance between the points (4, -8) and (10,8)?
    13·2 answers
  • Use the Distributive Property to simplify the expression.<br><br> 3(x+4) <br> How do I simplify
    8·2 answers
  • Amount of money that is equal to 2 quarters.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!