Answer:
c. break the N2 triple bond.
Explanation:
In the general nitrogen reduction reaction (which occurs in the nitrogenase complex), ferredoxin acts as an electron donor to Fe-protein, which in turn hydrolyzes ATP and reduces MoFe-protein. By reducing MoFe-protein one can then reduce numerous (triple bonded) substrates although, under natural conditions, it reacts only to N2 and H +.
That is, ATP must be present in the reaction so that MoFe-protein can break the triple bond N2.
The binding and hydrolysis of ATP to Fe-protein causes a change in conformation of this protein which facilitates redox reactions. The enzymatic reduction of N2 by nitrogenase requires a large energy investment, although the exact changes in free energy are still unknown.
Explanation:
B. Lactic acid is produced from lactobacilli as the starter undergoes fermentation
Thus, they utilize other means for the generation of energy in the form of ATP and to replenish NAD+ an oxidized form of NADH, the main electron carrier in glycolysis. Pyruvate (pyruvic acid) is produced in the cytoplasm via glycolysis- it is also used as an electron acceptor in a process called fermentation. In lactic acid bacteria, the pyruvate produced is directly transferred to lactate (a form of lactic acid) producing NAD+.
Further Explanation:
In all eukaryotic cells mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate( through the process of glycolysis in the cytoplasm).
Oxidative phosphorylation describes a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules. (2 ATP are utilized for a net ATP of 2)
- The Citric acid or Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Within cells, aerobic respiration may not occur due to several factors:
- - a lack of inorganic, final electron acceptors
- -incomplete or lack of a complete electron transport system
- -missing genes for enzymes within the Kreb's cycle
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
The survival development and also the evolutionary development
The correct answer of the given question above would be option C. The one that contains stem cells that can produce only their own type of cells would be an adult. It is only an adult has the ability to reproduce another offspring, and this offspring has the same type of cells. Hope this answers your question.