1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lemur [1.5K]
3 years ago
15

Which of the following statements does NOT describe the anomeric carbon? A. This carbon is attached to two oxygens. B. This carb

on is chiral. C. The hydroxyl group on this carbon can be above or below the ring. D. It is the carbon of the carbonyl in the open-chain form of the sugar. E. All of the statements describe the anomeric carbon

Chemistry
1 answer:
MaRussiya [10]3 years ago
8 0

Answer:

The answer is E. All of the statements describe the anomeric carbon.

Explanation:

When a sugar switches from its open form to its ring form, the carbon from the carbonyl (aldehyde if it is an aldose, or a ketone in the case of a ketose) suffers a nucleophilic addition by one of the hydroxyls in the chain, preferably one that will form a 5 or 6 membered ring after the reaction.

As such, the anomeric carbon will have two oxygens attached (The original one and the one that bonded when the ring closed).

It will be chiral, given that it has 4 different groups attached. (-OR,-OH,-H and -R, where R is the carbon chain).

The hydroxyl group can be in any position (Above of below the ring), depending on with side the addition took place. (See attachment)

It is the carbon of the carbonyl in the open-chain form of the sugar, because it is the only one that can react with the Hydroxyls.

You might be interested in
What kind of electrons are involved in chemical bonding?
mamaluj [8]
Bonding electrons are involved in chemical bonding these electrons have their valnce shell incomplete
6 0
3 years ago
A student wishes to calculate the experimental value of Ksp for AgI. S/he follows the procedure in Part 3 and finds Ecell to be
Ymorist [56]

Answer:

a)    [Ag+]dilute = 6.363  × 10⁻¹⁶ M  

b)    1.273 × 10⁻¹⁶

c)    2.629×10⁻¹⁹ M Thus; the value for  [Ag+ ]dilute will be too low

Explanation:

In an Ag | Ag+ concentration cell ,

The  anode reaction can be written as :

Ag ----> Ag+(dilute) + e-    &:

The  cathode reaction can be written as:

Ag+(concentrated) + e- ----> Ag

The  Overall Reaction : is

Ag+(concentrated) -----> Ag+(dilute)

However, the Standard Reduction potential of cell = E°cell = 0

( since both cathode and anode have same Ag+║Ag )

Also , given that the theoretical slope is - 0.0591 V

Therefore; the reduction potential of cell ; i.e

Ecell = E°cell - 0.0591 V × log ( [Ag+]dilute / [Ag+]concentrated )

0.839 V = 0 - 0.0591 V × log ( [Ag+]dilute / ( 1.0 × 10⁻¹ M ) )  

log ( [Ag+]dilute / ( 1.0 × 10⁻¹ M ) ) = - 14.1963  

[Ag+]dilute = \mathbf{10^{-14.1963} } × 1.0 × 10⁻¹ M

[Ag+]dilute = 6.363  × 10⁻¹⁶ M  

b)

AgI ----> Ag + (dilute) + I⁻

So , Solubility product = Ksp = [Ag⁺]dilute × [I⁻]  

= 6.363 × 10⁻¹⁶ M × 0.20 M  

= 1.273 × 10⁻¹⁶

c) If s/he mistakenly uses 1.039 V as Ecell; then the value for [Ag+]dilute will be :

Ecell = E°cell - 0.0591 V × log ( [Ag+]dilute / [Ag+]concentrated )

1.039 V = 0 - 0.0591 V × log ( [Ag+]dilute / ( 1.0 × 10⁻¹ M ) )  

log ( [Ag+]dilute / ( 1.0 × 10⁻¹ M ) ) = - 17.5804  

[Ag+]dilute = \mathbf{10^{-17.5804} } × 1.0 × 10⁻¹ M

[Ag+]dilute = 2.629×10⁻¹⁹ M

Thus, the value for  [Ag+ ]dilute will be too low

5 0
3 years ago
Which kingdom(s) include organisms that are autotrophic and heterotrophic?
Gnom [1K]

Answer:

Explanation:

Plantae Animalia Archaebacteria and Animalia Protista and Eubacteria . Protista and Eubacteria kingdom(s) include organisms that are autotrophic or heterotrophic

6 0
3 years ago
Read 2 more answers
What is the person who flips letters on a game show called
ELEN [110]
The person who flips letters on a game show is called a Game Host.
3 0
3 years ago
A3. Answer each of the following: A student dissolved 1.3g of Ba(OH)2 (molar mass = 171.34 g/mol) in 250 mL of water and reacted
Sunny_sXe [5.5K]

Answer:

(i) Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + 2 H2O

(ii) 121.392 mL of HNO3 0.125M are required to react completely with the Ba(OH)2 solution.

(iii) The molarity of the Ba(OH)2 solution is 0.0303 M

(iv) Bromothymol Blue (pH range 6.0 - 7.6)

(v) pH of the soultion would be 2.446

Explanation:

(i) First of all, to solve this problem we should write the balanced chemical equation to know the stoichiometry of the reaction:

Ba(OH)2 + HNO3 → Ba(NO3)2 + H2O

The previous reaction simply describes the reactants and products involved in the chemical process. As you can see, the mass balance is not balanced because the quantity of atoms in the reactants side of the equation is not equal to the ones in the products side. So we try to add coefficients to the reaction in order to balance the amount of atoms on both sides of the reaction. To to this, we take a look at the reaction: We see that the main product formed Ba(NO3)2 has 2 atoms of N, so we add a number 2 besides the HNO3 to equal the quantity of Nitrogen atoms:

Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + H2O

Now, we can see that from the reactants side of the equation there are 8 atoms of Oxygen and in the products side we only have 7. Hence, we add the number 2 besides the molecule of water:

Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + 2 H2O

If we check the situation now, we can observe that all the atoms are balanced on both sides of the reaction, so We did it!

(ii) From the balanced equation we now know that 1 mole of Ba(OH)2 reacts with 2 moles of HNO3 to form the stated products. Let's see, therefore, how many moles of Ba(OH)2 are in solution:

According to the molar mass of Ba(OH)2: 1 mole = 171.34 g

So, the student add 1.3 g of the compound to water. This means that he added 7.587x10-3 moles of Ba(OH)2. This amount of Ba(OH)2 will react with 0.01517 moles of HNO3 taking into account the stoichiometry of the balanced equation described above (1 mol of Ba(OH)2 reacts with 2 moles of HNO3).

Now that we know the amount of moles of acid required to react with the hydroxide, we need to translate this moles into volume of acid solution:

We have a 0.125 M HNO3 solution. This means that there are 0.125 moles of HNO3 in 1000 ml of solution.

0.125 moles HNO3 ------ 1000 ml Solution

0.01517 moles --------- x = 121.392 ml HNO3 Solution

This means that we need 121.392 ml of a 0.125 M HNO3 solution to react completely with the Ba(OH)2 added by the student.

(iii) Now we are asked to calculate the molarity of the Ba(OH)2 solution. From the calculations performed before in point (ii) we know that the hydroxide solution consisted of 7.587x10-3 moles of Ba(OH)2 and that this quantity of moles were in 250 mL of water. So:

250 ml Solution ----- 7.587 x10-3 moles Ba(OH)2

1000 ml Solution ----- x = 0.0303 M

(iv) Since Ba(OH)2 and HNO3 are both strong base and acid respectively, they react with each other completely to form the salt Ba(NO3)2 and water. Therefore, the pH of the solution when the reactions ends will be neutral or nearly neutral (pH = 7) and because of this we need an indicator that would change its color around this pH to be able to visualize the end point of the titration. The Bromothymol blue serves this perfectly since its change in color ranges between pH 6.0 and 7.6.

(v) If we now calculate how many moles of HNO3 are present in 150 mL of a 0.125 M solution we obtain:

1000 mL solution ---- 0.125 moles HNO3

150 mL solution ------ x = 0.01875 moles.

From this, we know that if we add 150 mL of the acid solution we would have 0.01875 moles of HNO3. However, from the previous points, we know that 0.01517 moles of the compound will be consumed by the reaction with Ba(OH)2 leaving in solution only 3.58 x10-3 moles of HNO3 (0.01875 moles - 0.01517 moles).

This amount of HNO3 will dissociate according to the following equation:

HNO3 → H+ + NO3-

The amount of protons present in solution will determine the pH. Because, as we said before, Nitric acid is a strong acid, it will dissociate completely intro protons and nitrate. As a result of this, we would have 3.58 x10-3 moles of H+ in the solution (1 mole of HNO3 produces 1 mole of H+) and considering the contribution of protons in the solution given by the dissociation of the water negligible, then:

pH = - log [H+]

pH = - log [3.58 x10-3] = 2.446

3 0
3 years ago
Other questions:
  • An amount of solid barium chloride, 20.8 g, is dissolved in 100 g water in a coffee-cup calorimeter by the reaction: BaCl2 (s) 
    14·1 answer
  • S Which could occur in a closed system?
    7·1 answer
  • What are the spectator ions in Mg(s) + Zn2+ + 2NO3 → Mg2+ + 2NO3 + Zn(s)?
    7·1 answer
  • A student constructs an electrochemical cell. A diagram of the operating cell and the unbalanced ionic equation representing the
    12·1 answer
  • Which of the following describes a reference point?
    5·1 answer
  • What is 0.0135 moles of in AlCl3 grams? Round to 3 sig figs
    10·1 answer
  • Scientists interested in early life on Earth including the first cells and the last universal common ancestor of all three domai
    13·1 answer
  • In a closed system, how will a decrease in pressure affect the following reaction: N2O4(g) ⇌ 2NO2(g)?
    10·1 answer
  • Which pieces of equipment are
    7·1 answer
  • Which is the vector quantity that describes the shortest path between two points?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!