Water is an essential part of life and its availability is important for all living creatures. On the other side, the world is suffering from a major problem of drinking water. There are several gases, microorganisms and other toxins (chemicals and heavy metals) added into water during rain, flowing water, etc. which is responsible for water pollution. This review article describes various applications of nanomaterial in removing different types of impurities from polluted water. There are various kinds of nanomaterials, which carried huge potential to treat polluted water (containing metal toxin substance, different organic and inorganic impurities) very effectively due to their unique properties like greater surface area, able to work at low concentration, etc. The nanostructured catalytic membranes, nanosorbents and nanophotocatalyst based approaches to remove pollutants from wastewater are eco-friendly and efficient, but they require more energy, more investment in order to purify the wastewater. There are many challenges and issues of wastewater treatment. Some precautions are also required to keep away from ecological and health issues. New modern equipment for wastewater treatment should be flexible, low cost and efficient for the commercialization purpose.
Answer:
20.27 mol
Explanation:
454 L x (1 mol/22.4 L) = 20.27 mol
Answer:
According to Le Chatelier's principle, increasing the reaction temperature of an exothermic reaction causes a shift to the left and decreasing the reaction temperature causes a shift to the right.
Explanation:
C6H12O6(s) + 6O2(g) ⇌6CO2(g) + 6H2O(g)
We are told that the forward reaction is exothermic, meaning heat is removed from the reacting substance to the surroundings.
According to Le Chatelier's principle,
1. for an exothermic reaction, on increasing the temperature, there is a shift in equilibrium to the left and formation of the product is favoured.
2. if the temperature of the system is decreased, the equilibrium shifts to right and the formation of the reactants is favoured.
3. if the reaction temperature is kept constant, the system is at equilibrium and there is no shift to the right nor to the left.
Answer:
d/t=s
(divide 16)16/t= 8(divide 16)
t= 0.5 km/h²
Explanation:
Distance: 16 kilometres
Speed: 8 km/h
Time: ?
Answer:
Magnesium reacts with dilute hydrochloric acid in a conical flask which is connected to an inverted measuring cylinder in a trough of water. The volume of hydrogen gas produced is measured over a few minutes, and the results are used to plot a graph........