Answer:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Explanation:
According to this question, sodium carbonate reacts with sulfuric acid to form aqueous sodium sulfate, carbon dioxide and water. The balanced chemical equation is as follows:
Na2CO3(aq) + H2SO4(aq) → Na2SO4(aq) + CO2(g) + H2O(l)
- Next, split compounds that are aqueous into ions.
2Na+(aq) + CO32-(aq) + 2H+(aq) + SO42-(aq) → 2Na+(aq) + SO42-(aq) + CO2(g) + H2O(l)
- Next, we cancel out the spectator ions, which are ions that remain the same in the reactants and products side of a chemical reaction. The spectator ions in this equation are 2Na+(aq) and SO42-(aq).
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
- Hence, the balanced ionic equation is as follows:
CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)
Answer: I & III
Explanation: Solutes are the substances which are minimum in quantity and which is required to dissolve in the solvent (which is larger in quantity) in order to make a solution.
In the asked question, it is given that the water is the solvent and from the given solutes we have to pick which would make an aqueous solution with the highest concentration of solute possible.
Thus the most appropriate answers could be the Ammonia and hexanol which can make the highest possible concentration of solute as ammonia is the gas which is highly soluble in water and hexanol is an alcohol which has an affinity for water. Thus the correct option is I & III
Answer:

Explanation:
Hello there!
In this case, according to the given information, it turns out possible to set up the following energy equation for both objects 1 and 2:

In terms of mass, specific heat and temperature change is:

Now, solve for the final temperature, as follows:

Then, plug in the masses, specific heat and temperatures to obtain:

Yet, the values do not seem to have been given correctly in the problem, so it'll be convenient for you to recheck them.
Regards!
The protons in the atom determine what the atom is. It also determines the atomic number<span>. For example, hydrogen has one proton, so it the atomic number is one. Lithium has an atomic number of three because it has three protons.</span>