Answer:
Here's what I get.
Explanation:
Your unbalanced nuclear equation is:

The main point to remember in balancing nuclear equations is that the sums of the superscripts and the subscripts must be the same on each side of the equation.
Then
95 = x + 2, so x = 95 - 2 = 93
243 = y + 4, so y = 243 - 4 = 239
Element 93 is neptunium, so the nuclear equation becomes
The mechanics of a power plant that generally uses nuclear energy in order to generate electricity lies in the principle of nuclear fission between radioactive atoms. In addition, among its major arguments on why it is still a matter of ethical issue is because of the intensive maintenance it requires for the disposal of its radioactive wastes.
When the concentrations of CO2 and H2CO3 are both horizontal lines then the rate of the forward reaction is the same as the rate of the reverse reaction.
<h3>What is rate of reaction?</h3>
The term rate of reaction refers to how fast or slow a reaction proceeds. Recall that the rate of reaction is measured from the rate of disappearance of reactants or the rate of appearance of products.
When the [CO2] and [H2CO3 ] are both horizontal lines, the rate of the forward reaction is the same as the rate of the reverse reaction.
Let us recall that the reaction is reversible hence addition of H2CO3 will increase the concentration of H2CO3, the reverse reaction would be favored.
Learn more about rate of reaction: brainly.com/question/8592296
<h3>
Answer:</h3>
495 g K₃N
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.77 mol K₃N
<u>Step 2: Identify Conversions</u>
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of K₃N - 3(39.10) + 14.01 = 131.31 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
495.039 g K₃N ≈ 495 g K₃N