Answer:
The equipments you should have ready to start the crucible experiment includes: safety goggles, crucible with lid, crucible tong, ring support with clay triangle, Bunsen burner and heat resistant tile.
Explanation:
Crucible is an equipment in the laboratory which is suitable for heating a sample to extreme heat over a flame, Modern laboratory crucible are made up of graphite- based composite materials for achievement of higher performance. Because extreme heat is involved, you should locate the correct labware for the experiment, including the equipment to safely handle and support the crucible. These equipments includes:
--> Safety goggles: Because you will work with chemical it is advisable to use a safety goggles which protects the eyes from dangerous floating chemical aerosol.
--> crucible with lid: This is the main apparatus with the lid (cover) which is used to cover the crucible to prevent spilling of the boiling chemical.
--> Crucible tong: These are scissors like tools used to grasp hot crucible.
--> Ring support with clay triangle: the clay triangle is used to hold crucible when they are being heated. They usually sit on a ring stand.
--> Bunsen burner: Produces a single open gas flame which can be used for heating.
With the safety equipments listed above, you can carry out experiment using the crucible. These equipments helps minimise laboratory hazard that may occur should Incase it's not available.
Answer:
1.03 M
Explanation:
Step 1: Write the balanced equation
NaOH + HCl ⇒ NaCl + H₂O
Step 2: Calculate the reacting moles of HCl
30.0 mL (0.0300 L) of 0.500 M HCl react.
0.0300 L × 0.500 mol/L = 0.0150 mol
Step 3: Calculate the moles of NaOH that react with 0.0150 moles of HCl
The molar ratio of NaOH to HCl is 1:1. The moles of NaOH that react are 1/1 × 0.0150 mol = 0.0150 mol.
Step 4: Calculate the molar concentration of NaOH
0.0150 moles of NaOH are in 14.5 mL (0.0145 L).
M = 0.0150 mol/0.0145 L = 1.03 M
Conduction conduction is when things heat up when they are touching
Answer:
B = (2.953 × 10⁻⁹⁵) N.m⁹
Explanation:
At equilibrium, where the distance between the two ions (ro) is the sum of their ionic radii, the force between the two ions is zero.
That is,
Fa + Fr = 0
Fa = - Fr
Fa = (|q₁q₂|)/(4πε₀r²)
Fr = -B/(r^n) but n = 9
Fr = -B/r⁹
(|q₁q₂|)/(4πε₀r²) = (B/r⁹)
|q₁| = |q₂| = (1.6 × 10⁻¹⁹) C
(1/4πε₀) = k = (8.99 × 10⁹) Nm²/C²
r = 0.097 + 0.181 = 0.278 nm = (2.78 × 10⁻¹⁰) m
(k|q₁q₂|)/(r²) = (B/r⁹)
(k × |q₁q₂|) = (B/r⁷)
B = (k × |q₁q₂| × r⁷)
B = [8.99 × 10⁹ × 1.6 × 10⁻¹⁹ × 1.6 × 10⁻¹⁹ × (2.78 × 10⁻¹⁰)⁷]
B = (2.953 × 10⁻⁹⁵) N.m⁹