Answer:
C
Step-by-step explanation:
if right mark brainlyest
Answer:
titutex=cos\alp,\alp∈[0:;π]
\displaystyle Then\; |x+\sqrt{1-x^2}|=\sqrt{2}(2x^2-1)\Leftright |cos\alp +sin\alp |=\sqrt{2}(2cos^2\alp -1)Then∣x+
1−x
2
∣=
2
(2x
2
−1)\Leftright∣cos\alp+sin\alp∣=
2
(2cos
2
\alp−1)
\displaystyle |\N {\sqrt{2}}cos(\alp-\frac{\pi}{4})|=\N {\sqrt{2}}cos(2\alp )\Right \alp\in[0\: ;\: \frac{\pi}{4}]\cup [\frac{3\pi}{4}\: ;\: \pi]∣N
2
cos(\alp−
4
π
)∣=N
2
cos(2\alp)\Right\alp∈[0;
4
π
]∪[
4
3π
;π]
1) \displaystyle \alp \in [0\: ;\: \frac{\pi}{4}]\alp∈[0;
4
π
]
\displaystyle cos(\alp -\frac{\pi}{4})=cos(2\alp )\dotscos(\alp−
4
π
)=cos(2\alp)…
2. \displaystyle \alp\in [\frac{3\pi}{4}\: ;\: \pi]\alp∈[
4
3π
;π]
\displaystyle -cos(\alp -\frac{\pi}{4})=cos(2\alp )\dots−cos(\alp−
4
π
)=cos(2\alp)…
1
Top
Display
Hi im doing this test right now and what is the answer lol
<span>There were 12 wins. If they played 35 games, 12 were won and 14 were drawn, you just subtract them from 35 and you get 9. The team lost 9 games.</span>
By functional analysis we have the following conclusion about the function given: The domain for f(x) is all real numbers greater than or equal to 2.
<h3>How to determine the domain of a function with radical components</h3>
Domain is the set of x-values such that the value of the function exists. By algebra we know that the domain of polynomials is the set of all <em>real</em> numbers, whereas the domain of <em>radical</em> functions is the set of x-values such that y ≥ 0. If we know that f(x) = 2 · x² + 5 · √(x - 2), then the domain is restricted by the <em>radical</em> component and defined by x ≥ 2.
By functional analysis we have the following conclusion about the function given: The domain for f(x) is all real numbers greater than or equal to 2.
To learn more on functions: brainly.com/question/12431044
#SPJ1