<h3><u>Answer</u>;</h3>
≈ 5 Kgm²/sec
<h3><u>Explanation</u>;</h3>
Angular momentum is given by the formula
L = Iω, where I is the moment of inertia and ω is the angular speed.
I = mr², where m is the mass and r is the radius
= 0.65 × 0.7²
= 0.3185
Angular speed, ω = v/r
= (2 × 3.142 × r × 2.5) r
= 15.71
Therefore;
Angular momentum = Iω
= 0.3185 × 15.71
= 5.003635
<u>≈ 5 Kgm²/sec</u>
They are falling under the sole influence of gravity all objects<span> will </span>fall<span> with the </span>same<span> rate of </span><span>acceleration needless of there size</span>
Answer:
A) for leftmost point the coordinate is -0.28m that means it should be 0.28m towards the right.
B) for rightmost case the coordinate is 0.28m which is where komila should sit.
Explanation:
Detailed calculation and explanation is shown in the image below
The nervous system is responsible for sending, receiving, and interpreting information from all parts of the body. The nervous system monitors and coordinates internal organ function and responds to changes in the external environment. (The role) The central nervous system consists of the brain and the spinal cord. It is part of the overall nervous system that also includes a complex network of neurons, known as the peripheral nervous system. (Central nervous system)
Answer:
4 m/s² down
Explanation:
We'll begin by calculating the net force acting on the object.
The net force acting on the object from the left and right side is zero because the same force is applied on both sides.
Next, we shall determine the net force acting on the object from the up and down side. This can be obtained as follow:
Force up (Fᵤ) = 15 N
Force down (Fₔ) = 25 N
Net force (Fₙ) =?
Fₙ = Fₔ – Fᵤ
Fₙ = 25 – 15
Fₙ = 10 N down
Finally, we shall determine the acceleration of the object. This can be obtained as follow:
Mass (ml= 2.5 Kg
Net force (Fₙ) = 10 N down
Acceleration (a) =?
Fₙ = ma
10 = 2.5 × a
Divide both side by 2.5
a = 10 / 2.5
a = 4 m/s² down
Therefore, the acceleration of the object is 4 m/s² down