Answer:
The distance is
=
7
m
Explanation:
Apply the equation of motion
s
(
t
)
=
u
t
+
1
2
a
t
2
The initial velocity is
u
=
0
m
s
−
1
The acceleration is
a
=
2
m
s
−
2
Therefore, when
t
=
3
s
, we get
s
(
3
)
=
0
+
1
2
⋅
2
⋅
3
2
=
9
m
and when
t
=
4
s
s
(
4
)
=
0
+
1
2
⋅
2
⋅
4
2
=
16
m
Therefore,
The distance travelled in the fourth second is
d
=
s
(
4
)
−
s
(
3
)
=
16
−
9
=
7
m
Answer:
Light's angle of refraction = 37.1° (Approx.)
Explanation:
Given:
Index of refraction = 1.02
Base of refraction = 1
Angle of incidence = 38°
Find:
Light's angle of refraction
Computation:
Using Snell's law;
Sin[Angle of incidence] / Sin[Light's angle of refraction] = Index of refraction / Base of refraction
Sin38 / Light's angle of refraction = 1.02 / 1
Sin[Light's angle of refraction] = Sin 38 / 1.02
Sin[Light's angle of refraction] = [0.6156] / 1.02
Sin[Light's angle of refraction] = 0.6035
Light's angle of refraction = 37.1° (Approx.)
Star 1 - 4 hours right ascension
Star 2 - 3 hours right ascension
Subtracting hours right ascension
4 hours right ascension - 3 hours right ascension = 1 hours right ascension.
Thus,
star 1 will rise 1 hour before star 2
** Missing information: The vertical distance from surface of liquid to bottom of the object is sought in this question, with the condition that the object is at equilibrium **
Ans: The vertical distance = y = M/(ρA)
Explanation:Support the vertical distance = y
Object's density = M/(A*h) (since A*h = volume)
By applying the condition,
(M/(Ah))/ρ = y/h
M/(ρAh) = y/h
y = M/(ρA)