Kamia’s goldfish is bigger. 10 x 2.16 = 21.6 | Rayanna’s 2.025 x 10 = 20.25 | Therefore Kamias > Rayanna’s aka
<span> log3x3247 = e
</span> ln 3247 = 3x
<span> 3 logxe = 3247
</span>
<span>
ln 3x = 3247
</span>option B is right
hope this helps
Answer:
sqrt(2)/2
Step-by-step explanation:
Given tan(x)=2-cot(x), find sin(x).
Rewrite in terms of sine and cosine:
sin(x)/cos(x)=2-cos(x)/sin(x)
Multiply both sides by cos(x)sin(x):
sin^2(x)=2sin(x)cos(x)-cos^2(x)
Rewrite cos^2(x) using the identity sin^2(x)+cos^2(x)=1:
sin^2(x)=2sin(x)cos(x)-(1-sin^2(x))
Distribute:
sin^2(x)=2sin(x)cos(x)-1+sin^2(x)
Subtracting sin^2(x) on both sides:
0=2sin(x)cos(x)-1
Add 1 on both sides:
1=2sin(x)cos(x)
Use identity sin(2x)=2sin(x)cos(x) to rewrite right:
1=sin(2x)
Since sin(pi/2)=1, then 2x=pi/2.
Dividing both sides by 2 gives x=pi/4.
So sin(pi/4)=sqrt(2)/2
Answer:
x³+3
Step-by-step explanation:
By definition of cubic roots and power properties, we conclude that the domain of the cubic root function is the set of all real numbers.
<h3>What is the domain of the function?</h3>
The domain of the function is the set of all values of x such that the function exists.
In this problem we find a cubic root function, whose domain comprise the set of all real numbers based on the properties of power with negative bases, which shows that a power up to an odd exponent always brings out a negative result.
<h3>Remark</h3>
The statement is poorly formatted. Correct form is shown below:
<em>¿What is the domain of the function </em>
<em>?</em>
<em />
To learn more on domain and range of functions: brainly.com/question/28135761
#SPJ1