A compound that binds to a receptor but does not activate the neuron is known as an Antagonist.
A receptor is a large protein molecule on a neuron that gets activated when a ligand binds to it such as a drug or hormone, or when electrical impulses pass through it.
An antagonist is a drug or hormone that binds to receptor, but instead of activating the receptor, it blocks or dampens the activation of the neuron. Antagonist drugs are used to interfere with the normal function or operation of a protein receptor.
Depending on the nature of the antagonist or the receptor it's bound to, the effects of antagonists may be permanent or temporary.
Learn more about antagonists here:
brainly.com/question/11985070
#SPJ4
Answer:
The answer to your question is V2 = 66.7 ml
Explanation:
Data
Volume 1 = V1 = 400 ml
Pressure 1 = P1 = 1 atm
Volume 2 = V2 = ?
Pressure 2 = P2 = 6 atm
Process
1.- To solve this problem use Boyle's law
P1V1 = P2V2
-solve for V2
V2 = P1V1 / P2
-Substitution
V2 = (1)(400) / 6
-Simplification
V2 = 400 / 6
-Result
V2 = 66.7 ml
Answer: The amount of energy lost by the metal is equal to the amount of energy gained by the water
Explanation:
Answer:
Second Law
Explanation:
Newton's second law states that the acceleration caused in a body is directly proportional to the force applied and inversely proportion to the mass of the body.
This is given by :

In this case the suggestion given to reduce the aircraft's cargo load is the right move as reducing the load on the aircraft will decrease the mass of the whole aircraft. This in turn will help the aircraft to accelerate more as acceleration inversely varies with mass. Thus the aircraft will be able to reach its flying speed even on a short run way.
Hence, Newton's second law is applied.
Answer:
Explanation:
turn over number = R max / [E]t = K2
From given , R max = 249 * 10 ^ -6 mol. L^-1
T [E]t = 2.23 n mol. L^-1
= 2.23 * 10^-9 mol. L^-1
Putting values in above equation,
= 111.65 * 10^3 S^-1
Turn over number is maximum no of substrate molecule that can be converted into product molecules for unit time by enzyme molecule.