The reaction between hydrogen (H2) and fluorine (F2) is given below,
H2 + F2 ---> 2HF
One mole of both hydrogen and fluorine yields to 2 moles of hydrogen fluoride. This can also be expressed as, 2 grams of hydrogen and 38 grams of fluorine will form 40 grams of hydrogen fluoride. From the given, only 20 grams of HF is formed with 19 g of it being fluorine. Thus, the percentage fluorine of the compound formed is 95%.
Ionic compounds generally occur between metals and non-metals due to their large electronegativity difference. You can simple go down Group 1 and Group 17 of the periodic table.
Examples:
NaCl (Sodium Chloride)
KCl (Potassium Chloride)
RbCl (Rubidium Chloride)
CsCl (Cesium Chloride)
Answer:
1.00 M
Explanation:
Sn^2+ reacts with KMNO4 as follows;
5Sn^2+(aq) + 2MnO4^-(aq) + 16H^+(aq) ----> 5Sn^4+(aq) + 2Mn^+(aq) + 8H2O(l)
The number of moles of MnO4^- reacted = 42.1/1000 L × 0.145 mol/L
= 0.0061 moles
If 5 moles of Sn^2+ reacts with 2 moles of MnO4^-
x moles of Sn^2+ reacts with 0.0061 moles of MnO4^-
x= 5 × 0.0061/2
x= 0.015 moles
Since the volume of the Sn^2+ solution is 15.00mL or 0.015 L
number of moles = concentration × volume
Concentration = number of moles/volume
Concentration= 0.015 moles/0.015 L
Concentration = 1 M
A reduced element (which gains electrons) and an oxidized element are required for redox reactions (gives electrons). It is not a redox reaction if we lack both of them (an element can not receive electrons if no element gives electrons and vice versa).
A reduced half and an oxidized half, which always occur together, make up redox processes. While the oxidized half experiences electron loss and an increase in oxidation number, the reduced half obtains electrons and the oxidation number declines. The mnemonic devices OIL RIG, which stand for "oxidation is loss" and "reduction is gain," are simple ways to memorize this. In a redox process, the total number of electrons stays constant. In the reduction half reaction, another species absorbs those that were released in the oxidation half reaction.
In a redox reaction, two species exchange electrons, and they are given unique names:
- The ion or molecule that accepts electrons is called the oxidizing agent - by accepting electrons it oxidizes other species.
- The ion or molecule that donates electrons is called the reducing agent - by giving electrons it reduces the other species.
Hence, what is oxidized is the reducing agent and what is reduced is the oxidizing agent.
<h3>
What is the purpose of oxidizing agents and reducing agents?</h3>
By reducing other compounds and shedding electrons, a reducing agent raises its oxidation state. An oxidizing agent gets electrons by oxidizing other compounds; as a result, its oxidation state lowers.
<h3>
What is a redox reaction?</h3>
Oxidation-reduction (or "redox") reactions are chemical processes in which electrons are exchanged between two substances. An oxidation-reduction reaction is any chemical process in which a molecule, atom, or ion alters the number of electrons it has, hence increasing or decreasing its oxidation state.
Learn more about redox reaction: brainly.com/question/13293425
#SPJ4
Answer:
Endothermic
Exothermic
Endothermic
Exothermic
Exothermic
Exothermic
Explanation:
Endothermic is when a reaction absorbs heat.
Exothermic is when a reaction releases heat.