Answer:
H2O
H2O
Explanation:
because the are only two hydrogen that can react to Oxygen
Answer:
0.00011 JK.
The process does NOT violate the second law of thermodynamics
Explanation:
The following parameters are given which are going to help in solving for the change in entropy of the system. The term "entropy'' simply means the degree of disorderliness of a system.
=> The temperature of container A = 305 K, the temperature of container B = 295 K and the amount of heat generated when the containers are placed in contact with each other = 1. 1 J.
The change in entropy of the hot container = -(1/305) = - 0.00328 J/K.
The change in entropy of the cold container = 1/295 = 0.00339 J/K.
Therefore, the change in the entropy of the system = - 0.00328 J/K + 0.00339 J/K = 0.00011 JK.
Note that the change in entropy of the system gives a positive value. Hence, this process does not violate the second law of thermodynamics.
The process does NOT violate the second law of thermodynamics.
Answer: AIP
There are two types of substances mixture and pure substance. Mixture has NO chemical formula and a pure substance has a chemical formula. There are two types of pure substances, elements (mono atomic and molecular) and compounds ( covalent and ionic).
Ionic compounds do not exist in independent molecular form. They form three dimensional crystal lattice, in which each ion is surrounded by oppositely charged ion. so the ratio of ion is called the formula unit
17.93 grams of oxygen gas occupy 12.3L of space at 109.4 kPa and 15.4°C. Details about how to calculate mass can be found below.
<h3>How to calculate mass?</h3>
The mass of a given gas can be calculated by multiplying the number of moles of the substance by its molar mass.
However, the number of moles of the gas must be calculated first as follows:
PV = nRT
Where;
- P = pressure = 1.0796941atm
- V = volume = 12.3L
- n = number of moles
- T = temperature = 288.4K
- R = gas law constant = 0.0821 Latm/molK
1.079 × 12.3 = n × 0.0821 × 288.4
13.27 = 23.68n
n = 13.27/23.68
n = 0.56mol
Mass = 0.56 × 32
mass of oxygen gas = 17.93g
Therefore, 17.93 grams of oxygen gas occupy 12.3L of space at 109.4 kPa and 15.4°C.
Learn more about mass at: brainly.com/question/19694949
4.) D
10.) C
12.) D
13.) D
14.) D
15.) D