Answer:cost of each pound of apple= $3
And cost of each pound of orange =$2
Step-by-step explanation:
Step 1
Let cost of apples = x
And cost of Oranges =y
Let 6 pounds of apples and 3 pounds of oranges cost 24 dollars be represented as
6 x + 3y= 24----- equation 1
Also, Let 5 pounds of apples and 4 pounds of oranges cost 23 dollars be represented as
5x+ 4y= 23----- equation 2
Step 2
6 x + 3y= 24----- equation 1
5x+ 4y= 23----- equation 2
Using substitution method to solve the equation
6 x + 3y= 24
24-6x=3y
y= 24-6x/3 = 8-2x
Y= 8-2x
Substituting the value of y= 8-2x into equation 2
5x+ 4( 8-2x)= 23
5x+ 32 -8x= 23
32-23= 8x-5x
9=3x
x=9/3
x=3
Putting the value of x= 3 in equation 1 and solving to find y
6 x + 3y= 24
6(3) +3y= 24
18+3y=24
3y= 24-18
3y=6
y=6/3= 2
Therefore the cost of each pound of apple= $3
And cost of each pound of orange =$2
Answer:
The transformation is left 1 hope it is right
Step-by-step explanation:
When the slope is zero, the line is horizontal. Its equation will be of the form
... y = constant
The y-value of your point is specified as -9, so the equation of the line through that point is
... y = -9
Answer:
your answer for 300+480=780 . that was on Saturday , now you have $780 the carvinal..raised 1480 .
Step-by-step explanation:
tell me if I'm wrong thank u (:
Answer:
ŷ = 739.49X + 4876.43
y = 6755.98 - 388.24x + 125.30x²
y = 5428.98(1.09)^x
B.)
Linear:
ŷ = 739.49(9) + 4876.43
y = 11531.8
Year 2010 ; x = 10
y = 739.49(10) + 4876.43
y = 12271.3
Year 2011 ; x = 11
y = 739.49(11) + 4876.43
y = 13010.8
Quadratic :
Year 2009 ; x = 9
y = 6755.98 - 388.24(9) + 125.30(9^2)
y = 13411.1
Year 2010 ; x = 10
y = 6755.98 - 388.24(10) + 125.30(10^2)
y = 15403.6
Year 2011 ; x = 11
y = 6755.98 - 388.24(11) + 125.30(11^2)
y = 17646.6
Exponential:
Year 2009 ; x = 9
y = 5428.98(1.09)^9
y = 11791.2
Year 2010 ; x = 10
y = 5428.98(1.09)^10
y = 12852.4
Year 2011 ; x = 11
y = 5428.98(1.09)^11
y = 14009.1
Step-by-step explanation:
X :
1
2
3
4
5
6
7
8
Y:
6231
6574
7237
7211
7701
8581
10302
11796
Using the online linear regression calculator :
The linear trend :
ŷ = 739.49X + 4876.43
Where x = year
With 2006 representing 1 ; and so on
Slope = m = 739.49
Intercept (c) = 4876.43
y = predicted variable
The quadratic model:
General form:
y = A + Bx + Cx²
y = 6755.98 - 388.24x + 125.30x²
The exponential model:
y = AB^x
y = 5428.98(1.09)^x
B.) Next three years :
Year 2009 ; x = 9
Year 2010 ; x = 10
Year 2011 ; x = 11
Linear:
ŷ = 739.49(9) + 4876.43
y = 11531.8
Year 2010 ; x = 10
y = 739.49(10) + 4876.43
y = 12271.3
Year 2011 ; x = 11
y = 739.49(11) + 4876.43
y = 13010.8
Quadratic :
Year 2009 ; x = 9
y = 6755.98 - 388.24(9) + 125.30(9^2)
y = 13411.1
Year 2010 ; x = 10
y = 6755.98 - 388.24(10) + 125.30(10^2)
y = 15403.6
Year 2011 ; x = 11
y = 6755.98 - 388.24(11) + 125.30(11^2)
y = 17646.6
Exponential:
Year 2009 ; x = 9
y = 5428.98(1.09)^9
y = 11791.2
Year 2010 ; x = 10
y = 5428.98(1.09)^10
y = 12852.4
Year 2011 ; x = 11
y = 5428.98(1.09)^11
y = 14009.1