X^2+43xy+590y^2 resolve into factors
1 answer:
Step-by-step explanation:
We have:
x - y = 43 , xy = 15
To find, the value of x^2+y^2x
2
+y
2
= ?
∴ x - y = 43
Squaring both sides, we get
(x - y)^2(x−y)
2
= 43^243
2
⇒ x^2+y^2x
2
+y
2
- 2xy = 1849
Using the algebraic identity,
(a - b)^2(a−b)
2
= a^2+b^2a
2
+b
2
- 2ab
⇒ x^2+y^2x
2
+y
2
= 1849 + 2xy
Put xy = 15, we get
x^2+y^2x
2
+y
2
= 1849 + 2(15)
⇒ x^2+y^2x
2
+y
2
= 1849 + 30
⇒ x^2+y^2x
2
+y
2
= 1879
∴ x^2+y^2x
2
+y
2
= 1879
I will send hint follow this hint then slove it .
thankyou
You might be interested in
Answer: 30 is the least common multiple of 6 and 10.
Step-by-step explanation:
30/6= 5
30/10= 3.
Step-by-step explanation:
y=3x-5
6x+3y=15
6x+3(3x-5)=15
6x+9x-15=15
15x-15=15
+15 +15
15x=30
/15. /15
x=2
6(2)+3y=15
12+3y=15
-12. -12
3y=3
/3 /3
y=1
(2,1)
The answer is (2,1)
Answer: H. 139.50
Step-by-step explanation:
Multiply 9 by 8 first and you get 72. Then multiply 9 by 7.5 and you get 67.5 then add 72 and 67.5 and you get 139.5 or 139.50
Answer: 32
Step-by-step explanation:
4 x 4 x 4