Answer:
To become magnetized, another strongly magnetic substance must enter the magnetic field of an existing magnet.
Oh wow!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
Coulomb's law is:

First, force has units of Newtons, the charges have units of Coulombs, and r, the distance, has units of meters, then, working only with the units we have:
N = (1/{e0})*C^2/m^2
then we have:
{e0} = C^2/(m^2*N)
And we know that N = kg*m/s^2
then the dimensions of e0 are:
{e0} = C^2*s^2/(m^3)
(current square per time square over cubed distance)
And knowing that a Faraday is:
F = C^2*S^2/m^2
The units of e0 are:
{e0} = F/m.
Answer:
Both objects travel the same distance.
(c) is correct option
Explanation:
Given that,
Mass of first object = 4.0 kg
Speed of first object = 2.0 m/s
Mass of second object = 1.0 kg
Speed of second object = 4.0 m/s
We need to calculate the stopping distance
For first particle
Using equation of motion

Where, v = final velocity
u = initial velocity
s = distance
Put the value in the equation

....(I)
Using newton law

Now, put the value of a in equation (I)

Now, For second object
Using equation of motion

Put the value in the equation

....(I)
Using newton law


Now, put the value of a in equation (I)

Hence, Both objects travel the same distance.
<span>A light-year measures the distance that light travels in 1 year.
Answer : B ) Distance
-Hope this helps.</span>