1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
12

The 16.0-in. spring is compressed to a 9.9-in. length, where it is released from rest and accelerates the sliding block A. The a

cceleration has an initial value of 420 ft/sec2 and then decreases linearly with the x-movement of the block, reaching zero when the spring regains its original 16.0-in. length. Calculate the time t for the block to go (a) 3.05 in. and (b) 6.1 in.
Physics
1 answer:
Jlenok [28]3 years ago
6 0

Answer:

Part a : Time required for the block to go to 3.05 in is 0.036 s

Part b : Time required for the block to go to 6.1 in is 0.054 s

Explanation:

The acceleration is given as

a=a_o-kx

Here

  • a_o is the initial acceleration which is given as 420 ft/s^2
  • k is the spring constant which is calculated as follows

                                      k=\frac{a_o}{l_c-l_{uc}}

  • Here lc is the compressed length of the spring
  • and Iuc is the uncompressed length of the spring so  the value of k is

                                   k=\frac{420}{\frac{16-9.9}{12}}\\k=826.22 s^{-2}

So now the equation becomes

a=420-826.23x

As per relation of acceleration to velocity

vdv=adx

\int\limits^v_0 {v} \, dv =\int a dx

\frac{v^2}{2} =\int (420-826x) dx

\frac{v^2}{2} =420x-413x^2

{v^2}=840x-826x^2\\{v}=\sqrt{840x-826x^2}\\

Also

v=\frac{dx}{dt}

So

\frac{dx}{dt}=\sqrt{840x-826x^2}\\

Solving for dt and integrating results in

{dt}=\frac{dx}{\sqrt{840x-826x^2}}\\\int\limits^t_0 \,dt=\int\limits^x_0 \,\frac{dx}{\sqrt{840x-826x^2}}\\t=\int\limits^x_0 \,\frac{dx}{\sqrt{840x-826x^2}}

Now using this equation value for both parts can be calculated numerically as

Part a 3.05 in

x=\frac{3.05}{12}\\x=0.254 ft

Solving numerically for this value of x

t=\int\limits^{0.254}_0 \,\frac{dx}{\sqrt{840x-826x^2}}\\t=0.036 s

Time required for the block to go to 3.05 in is 0.036 s

Part b 6.1 in

x=\frac{6.1}{12}\\x=0.504 ft

Solving for this value of x

t=\int\limits^{0.504}_0 \,\frac{dx}{\sqrt{840x-826x^2}}\\t=0.0543 s

Time required for the block to go to 6.1 in is 0.054 s

You might be interested in
91.0x26x504 ...............
Hoochie [10]

Answer:

1192464

Explanation:

91.0 times 26 = 2366

2366 times 504 = 1192464

7 0
3 years ago
Read 2 more answers
At take off, a plane flies 100 km north before turning to fly 200 km east. How far is its destination from where the plane took
Snowcat [4.5K]
The answer is 300 km

To the destination
4 0
3 years ago
A 150 g baseball is traveling horizontally at 50 m/s. If the ball takes 20 ms to stop once it is in contact with the catcher’s g
Sliva [168]
To solve for force, you need to get the product of mass and acceleration. 
F = ma

Your given is:
m = 150g
a = ?
v = 50 m/s
t = 20ms

As you can see, you do not have acceleration yet. But if you read the problem you can come up with the formula of acceleration. 
Acceleration is the change in velocity over a period of time.

a = change in velocity/time

To get the change in velocity, you get the difference between the initial velocity and final velocity:

a =  \frac{vf-vi}{t}

The ball was moving initially at a velocity of 50 m/s and it came to a stop. This is your clue. If a ball comes to a stop then that means that the final velocity of the ball is 0 m/s. 

So we can put it into our formula now:

a = \frac{0m/s-50m/s}{20ms}

WAIT! As you can see, the units do not match. We have ms and s into our equation and that means you cannot proceed till they are the same. First we need to convert ms to s. 

20ms x \frac{1s}{1000ms} = \frac{20s}{1000} = 0.02s

So your new time is 0.02s. Now we put this time into the formula:


a = \frac{0m/s-50m/s}{0.02s}
a =  \frac{-50m/s}{0.02s}  = -2,500 m/ s^{2}

As you can see our acceleration is a negative value, this indicates that it decelerated or slowed down which makes sense because it was brought to a stop. 

So now we have our acceleration. Now using this, we can get our force. 

F= ma

Before we start doing this, you need to take note that the unit of force is N, but when you expand it, it is kg.m/ s^{2} but as you can see our mass given is in grams. So again, before you put them into the equation we need to change it into kg first. 

150g =  \frac{1kg}{1,000g}  =  \frac{150kg}{1,000}  = 0.150kg

Our new mass is 0.150kg. 

To make things clearer, let us write down all our new values:

m = 0.150kg
a = -2,500 m/ s^{2}

Now that all our units match, we can put that into our formula:

F= ma
F= (0.150kg)(-2,500m/s^{2})
F = -375kg.m/ s^{2}  or -375N

The value again is negative because it is going against the initial direction of the ball. But if your instructor just wants to get the value of force or the magnitude of the force, just disregard the sign. 



4 0
3 years ago
What is special about nitrogen, and what is its main function in the atmosphere
Vlad [161]
Nitrogen is the most abundant of the gases present in the atmosphere. 78 percent of the atmospheric air comprises of nitrogen, oxygen makes up for 21 percent and all other gases make up for the remaining one percent. Oxygen is a highly flammable gas and in the absence of nitrogen it would not have been possible to utilize this atmospheric oxygen, hence the presence of nitrogen reduces its flammability and also neutralizes the toxicity of other gases.
5 0
3 years ago
Torque can cause the angular momentum vector to rotate in UCM. This motion is called ___________.
emmainna [20.7K]

Torque can cause the angular momentum vector to rotate in UCM. This motion is called _Conservation of Angular momentum__________.

Answer:

Conservation of Angular momentum

Explanation:

The motion of an object in a circular path at constant speed is known as uniform circular motion (UCM). An object in UCM is constantly changing direction, and since velocity is a vector and has direction, you could say that an object undergoing UCM has a constantly changing velocity, even if its speed remains constant.

The law of conservation of angular momentum states that when no external torque acts on an object, no change of angular momentum will occur.

Key Points

When an object is spinning in a closed system and no external torques are applied to it, it will have no change in angular momentum.

The conservation of angular momentum explains the angular acceleration of an ice skater as she brings her arms and legs close to the vertical axis of rotation.

If the net torque is zero, then angular momentum is constant or conserved.

Angular Momentum

The conserved quantity we are investigating is called angular momentum. The symbol for angular momentum is the letter L. Just as linear momentum is conserved when there is no net external forces, angular momentum is constant or conserved when the net torque is zero. We can see this by considering Newton’s 2nd law for rotational motion:

τ→=dL→dt, where  

τ is the torque. For the situation in which the net torque is zero,  

dL→dt=0.

If the change in angular momentum ΔL is zero, then the angular momentum is constant; therefore,

⇒

L  =constant

L=constant (when net τ=0).

This is an expression for the law of conservation of angular momentum.

Example and Implications

An example of conservation of angular momentum is seen in an ice skater executing a spin,  The net torque on her is very close to zero,

because (1) there is relatively little friction between her skates and the ice, and (2) the friction is exerted very close to the pivot point.

Conservation of angular momentum is one of the key conservation laws in physics, along with the conservation laws for energy and (linear) momentum. These laws are applicable even in microscopic domains where quantum mechanics governs; they exist due to inherent symmetries present in nature.

7 0
3 years ago
Other questions:
  • A car is traveling 12m/s. It approaches a stop sign and decelerates at 4.0m/s squared. How long does it take the car to stop?
    15·1 answer
  • Find average speed when time= 27s and total distance is 94m
    9·1 answer
  • A convex (converging) lens produces a real, inverted image of an object that is magnified 2.40 times when the object is 35.0 cm
    9·1 answer
  • A lawn roller in the form of a solid uniform cylinder is being pulled horizontally by a horizontal force B applied to an axle th
    13·1 answer
  • 1. Calculate the force of gravity in newtons if your weight is 110 lbs?
    5·2 answers
  • Parallel rays of monochromatic light with wavelength 582 nm illuminate two identical slits and produce an interference pattern o
    8·1 answer
  • What is physical quantity​
    10·2 answers
  • Someone is whirling a hammer that has a mass of 8.5 kg in the air that is tied to a Chain 1.5 m long in a circle that makes 1 re
    8·1 answer
  • A honeybee is in flight between a flower and its hive. Which of the following statements is true?
    14·1 answer
  • Explain why muscles need more blood during exercise. Give three reasons.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!