Answer:
1) 4/35
2) 11/14
3) 5/6
Step-by-step explanation:
First find the number of selections possible.

There are 210 possible selections. Now we can determine the possibility for each group. For the first probability, since we only want one member from each committee, you would create a fraction by (group members in total / group member being extracted). For this instance, since its only one, we will do whole numbers. Multiply each other.

The probability for each member to get selected from each kind is :
or can be simplified to
.
The probability of (I assume) at least one administrator is slightly different. Separate our two selections, the other three and the administrator. Find the number of selections possible for the other three... 4+3+2 = 9 others.
Find the probability for both a administrator included and three others.


The probability for an administrator and the other three is 165/210 or 11/14.
For the last one, you will figure out what the probability is for no director and use that % to substract from 100.
4+2+1 = 7
Get selections possible.

Get probability of no director.

Substract 1/6 from 100%
1 - 1/6 = 5/6
The probability of having at least one director is 5/6.
Answer:
$5504
Step-by-step explanation:
Given that :
Principal amount = $500
Interest = 4% simple interest annually
Amount added at the end of each year :
First year:
Principal + (Principal * rate * time)
500 + (500 * 0.04) = 520
$520 + $250 = $770
2nd year:
770 + (770 * 0.04) = $800.80
$800.80 + $250 = 1050.80
3rd year:
1050.8 + (1050.8 * 4) = 5254
$5254 + 250 = $5504
Answer:
Mary is 8 and that Zane and Chase are both 4 years old.
Step-by-step explanation:
For this equation, we will say Mary = M, Zane = Z, and Chase = C.
We will now convert the word problem into equations.

Now I will solve the equations by putting C into the equation.

So we can see that Mary is 8 and that Zane and Chase are both 4 years old.
In order to rewrite an expression in radical form using exponents, we must consider the power of the root (is the radical the typical square root, cubed root, etc) and the value of any exponents contained in the radical.
Using this information, we will make the power of the radical the denominator of our exponent, and whatever exponent is contained in the radical will become the numerator.
Example:
√(x³) = square root of x³ = x^(3/2)