Answer:
number of successes
![k = 235](https://tex.z-dn.net/?f=k%20%20%3D%20%20235)
number of failure
![y = 265](https://tex.z-dn.net/?f=y%20%20%3D%20265)
The criteria are met
A
The sample proportion is ![\r p = 0.47](https://tex.z-dn.net/?f=%5Cr%20p%20%20%3D%20%200.47)
B
![E =4.4 \%](https://tex.z-dn.net/?f=E%20%3D4.4%20%5C%25)
C
What this mean is that for N number of times the survey is carried out that the which sample proportion obtain will differ from the true population proportion will not more than 4.4%
Ci
![r = 0.514 = 51.4 \%](https://tex.z-dn.net/?f=r%20%3D%20%200.514%20%3D%2051.4%20%5C%25)
![v = 0.426 = 42.6 \%](https://tex.z-dn.net/?f=v%20%3D%20%200.426%20%3D%20%2042.6%20%5C%25)
D
This 95% confidence interval mean that the the chance of the true population proportion of those that are happy to be exist within the upper and the lower limit is 95%
E
Given that 50% of the population proportion lie with the 95% confidence interval the it correct to say that it is reasonably likely that a majority of U.S. adults were happy at that time
F
Yes our result would support the claim because
![\frac{1}{3 } \ of N < \frac{1}{2} (50\%) \ of \ N , \ Where\ N \ is \ the \ population\ size](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%20%7D%20%5C%20of%20%20N%20%20%20%20%3C%20%5Cfrac%7B1%7D%7B2%7D%20%20%2850%5C%25%29%20%5C%20of%20%5C%20%20N%20%20%2C%20%5C%20Where%5C%20N%20%5C%20is%20%5C%20the%20%5C%20%20population%5C%20size)
Step-by-step explanation:
From the question we are told that
The sample size is ![n = 500](https://tex.z-dn.net/?f=n%20%20%3D%20500)
The sample proportion is ![\r p = 0.47](https://tex.z-dn.net/?f=%5Cr%20p%20%20%3D%20%200.47)
Generally the number of successes is mathematical represented as
![k = n * \r p](https://tex.z-dn.net/?f=k%20%20%3D%20%20n%20%20%2A%20%20%5Cr%20p)
substituting values
![k = 500 * 0.47](https://tex.z-dn.net/?f=k%20%20%3D%20%20500%20%2A%200.47)
![k = 235](https://tex.z-dn.net/?f=k%20%20%3D%20%20235)
Generally the number of failure is mathematical represented as
![y = n * (1 -\r p )](https://tex.z-dn.net/?f=y%20%20%3D%20%20n%20%20%2A%20%20%281%20-%5Cr%20p%20%29)
substituting values
![y = 500 * (1 - 0.47 )](https://tex.z-dn.net/?f=y%20%20%3D%20%20500%20%20%2A%20%20%281%20-%200.47%20%20%29)
![y = 265](https://tex.z-dn.net/?f=y%20%20%3D%20265)
for approximate normality for a confidence interval criteria to be satisfied
![np > 5 \ and \ n(1- p ) \ >5](https://tex.z-dn.net/?f=np%20%3E%205%20%20%5C%20and%20%20%5C%20n%281-%20p%20%29%20%5C%20%3E5)
Given that the above is true for this survey then we can say that the criteria are met
Given that the confidence level is 95% then the level of confidence is mathematically evaluated as
![\alpha = 100 - 95](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%20100%20-%2095)
![\alpha = 5 \%](https://tex.z-dn.net/?f=%5Calpha%20%20%3D%205%20%5C%25)
![\alpha =0.05](https://tex.z-dn.net/?f=%5Calpha%20%20%3D0.05)
Next we obtain the critical value of
from the normal distribution table, the value is
![Z_{\frac{ \alpha }{2} } = 1.96](https://tex.z-dn.net/?f=Z_%7B%5Cfrac%7B%20%5Calpha%20%7D%7B2%7D%20%7D%20%3D%20%201.96)
Generally the margin of error is mathematically represented as
![E = Z_{\frac{\alpha }{2} } * \sqrt{ \frac{\r p (1- \r p}{n} }](https://tex.z-dn.net/?f=E%20%3D%20%20Z_%7B%5Cfrac%7B%5Calpha%20%7D%7B2%7D%20%7D%20%2A%20%20%5Csqrt%7B%20%5Cfrac%7B%5Cr%20p%20%281-%20%5Cr%20p%7D%7Bn%7D%20%7D)
substituting values
![E = 1.96 * \sqrt{ \frac{0.47 (1- 0.47}{500} }](https://tex.z-dn.net/?f=E%20%3D%20%201.96%20%2A%20%20%5Csqrt%7B%20%5Cfrac%7B0.47%20%281-%200.47%7D%7B500%7D%20%7D)
![E = 0.044](https://tex.z-dn.net/?f=E%20%3D%200.044)
=> ![E =4.4 \%](https://tex.z-dn.net/?f=E%20%3D4.4%20%5C%25)
What this mean is that for N number of times the survey is carried out that the proportion obtain will differ from the true population proportion of those that are happy by more than 4.4%
The 95% confidence interval is mathematically represented as
![\r p - E < p < \r p + E](https://tex.z-dn.net/?f=%5Cr%20p%20%20-%20E%20%3C%20%20p%20%20%3C%20%20%5Cr%20p%20%20%2B%20E)
substituting values
![0.47 - 0.044 < p < 0.47 + 0.044](https://tex.z-dn.net/?f=0.47%20-%20%200.044%20%3C%20%20p%20%20%3C%200.47%20%2B%20%200.044)
![0.426 < p < 0.514](https://tex.z-dn.net/?f=0.426%20%3C%20%20p%20%20%3C%200.514)
The upper limit of the 95% confidence interval is ![r = 0.514 = 51.4 \%](https://tex.z-dn.net/?f=r%20%3D%20%200.514%20%3D%2051.4%20%5C%25)
The lower limit of the 95% confidence interval is ![v = 0.426 = 42.6 \%](https://tex.z-dn.net/?f=v%20%3D%20%200.426%20%3D%20%2042.6%20%5C%25)
This 95% confidence interval mean that the the chance of the true population proportion of those that are happy to be exist within the upper and the lower limit is 95%
Given that 50% of the population proportion lie with the 95% confidence interval the it correct to say that it is reasonably likely that a majority of U.S. adults were happy at that time
Yes our result would support the claim because
![\frac{1}{3 } < \frac{1}{2} (50\%)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%20%7D%20%20%3C%20%5Cfrac%7B1%7D%7B2%7D%20%20%2850%5C%25%29)