I believe it's 104. You would set it up as a fraction so:
50/13 and 400/x.
Then you would cross multiply so 13x400 is 5,200. So this divided by 50 = 104. Hope I helped!
Answer:
24.5
Step-by-step explanation:
❤❤❤❤❤❤❤
plz give brainliest
Answer:
<h2>
<em><u>25 square inches </u></em></h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>, </u></em>
Parallel sides of the trapezium = 3in, 7in
Height of the trapezium = 5in
<em><u>Therefore</u></em><em><u>, </u></em>
Area of the trapezium



= 5in × 5in

<em><u>Hence</u></em><em><u>,</u></em>
<em><u>Area</u></em><em><u> </u></em><em><u>if</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>trapezium</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>25</u></em><em><u> </u></em><em><u>square</u></em><em><u> </u></em><em><u>inches</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>
Answer:
The probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.
Step-by-step explanation:
Let the random variable <em>X</em> represent the time a child spends waiting at for the bus as a school bus stop.
The random variable <em>X</em> is exponentially distributed with mean 7 minutes.
Then the parameter of the distribution is,
.
The probability density function of <em>X</em> is:

Compute the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning as follows:

![=\int\limits^{9}_{6} {\frac{1}{7}\cdot e^{-\frac{1}{7} \cdot x}} \, dx \\\\=\frac{1}{7}\cdot \int\limits^{9}_{6} {e^{-\frac{1}{7} \cdot x}} \, dx \\\\=[-e^{-\frac{1}{7} \cdot x}]^{9}_{6}\\\\=e^{-\frac{1}{7} \cdot 6}-e^{-\frac{1}{7} \cdot 9}\\\\=0.424373-0.276453\\\\=0.14792\\\\\approx 0.148](https://tex.z-dn.net/?f=%3D%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7B%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B7%7D%5Ccdot%20%5Cint%5Climits%5E%7B9%7D_%7B6%7D%20%7Be%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%7D%20%5C%2C%20dx%20%5C%5C%5C%5C%3D%5B-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%20x%7D%5D%5E%7B9%7D_%7B6%7D%5C%5C%5C%5C%3De%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%206%7D-e%5E%7B-%5Cfrac%7B1%7D%7B7%7D%20%5Ccdot%209%7D%5C%5C%5C%5C%3D0.424373-0.276453%5C%5C%5C%5C%3D0.14792%5C%5C%5C%5C%5Capprox%200.148)
Thus, the probability that the child must wait between 6 and 9 minutes on the bus stop on a given morning is 0.148.