The build up in the child's ear prevent sound from reaching the eardrum.
Cardiac output, specifically by a left or right ventricle in one minute.
Answer:
Replication occurs in three major steps: the opening of the double helix and separation of the DNA strands, the priming of the template strand, and the assembly of the new DNA segment. During separation, the two strands of the DNA double helix uncoil at a specific location called the origin.
Explanation:
Hope this is helpful.
Answer:
True
Explanation:
A mutation is any alteration in the genetic sequence of the genome of a particular organism. Mutations in the germline (i.e., gametes) can pass to the next generation, thereby these mutations can increase their frequency in the population if they are beneficial or 'adaptive' for the organism in the environment in which the organism lives (in this case, an insect/bug). The mutation rate can be defined as the probability of mutations in a single gene/<em>locus</em>/organism over time. Mutation rates are highly variable and they depend on the organism/cell that suffers the mutation (e.g., prokaryotic cells are more prone to suffer mutations compared to eukaryotic cells), type of mutations (e.g., point mutations, fragment deletions, etc), type of genetic sequence (e.g., mitochondrial DNA sequences are more prone to suffer mutations compared to nuclear DNA), type of cell (multicellular organisms), stage of development, etc. Thus, the mutation rate is the frequency by which a genetic sequence changes from the wild-type to a 'mutant' variant, which is often indicated as the number of mutations <em>per</em> round of replication, <em>per</em> gamete, <em>per</em> cell division, etc. In a single gene sequence, the mutation rate can be estimated as the number of <em>de novo</em> mutations per nucleotide <em>per</em> generation. For example, in humans, the mutation rate ranges from 10⁻⁴ to 10⁻⁶ <em>per </em>gene <em>per</em> generation.
Answer:
Hydrogen ions are transported across the thylakoid membrane. Hydrogen ions diffuse through a protein channel.
Explanation: