Answer:
70°
Step-by-step explanation:
Size of angle a = (180°-40°) ÷ 2 (angle sum of triangle; base angles of isos triangle)
= 140° ÷ 2
= 70°
We know that
2π/3 radians-------> convert to degrees-----> 2*180/3---> 120°
120°=90°+30°
Part a) Find <span>sin(2π/3)
</span>sin(2π/3)=sin (90°+30°)
we know that
sin (A+B)=sin A*cos B+cos A*sin B
so
sin (90°+30°)=sin 90*cos 30+cos 90*sin 30
sin 90=1
cos 30=√3/2
cos 90=0
sin 30=1/2
sin (90°+30°)=1*√3/2+0*1/2-----> √3/2
the answer part a) is
sin(2π/3)=√3/2
Part b) Find cos (2π/3)
cos (2π/3)=cos (90°+30°)
we know that
cos (A+B)=cos A*cos B-sin A*sin B
so
cos (90°+30°)=cos 90*cos 30-sin 90*sin 30
sin 90=1
cos 30=√3/2
cos 90=0
sin 30=1/2
cos (90°+30°)=0*√3/2-1*1/2----> -1/2
the answer part b) is
cos (2π/3)=-1/2
Answer:
p=117.25
Step-by-step explanation:
441/4=110.25
110.25+7=117.25
Answer:
1/625
Step-by-step explanation:
Exponent Rule: 
Exponent Rule: 
5⁻⁸ · 5⁴ = -8 + 4 = -4
5⁻⁴
1/5⁴
1/625