Answer: Last Option

Step-by-step explanation:
Cramer's rule says that given a system of equations of two variables x and y then:


For this problem we know that:

Solving we have:


Solving we have:


Solving we have:

Finally


Since the dice are fair and the rolling are independent, each single outcome has probability 1/15. Every time we choose

We have
and
, because the dice are fair.
Now we use the assumption of independence to claim that

Now, we simply have to count in how many ways we can obtain every possible outcome for the sum. Consider the attached table: we can see that we can obtain:
- 2 in a unique way (1+1)
- 3 in two possible ways (1+2, 2+1)
- 4 in three possible ways
- 5 in three possible ways
- 6 in three possible ways
- 7 in two possible ways
- 8 in a unique way
This implies that the probabilities of the outcomes of
are the number of possible ways divided by 15: we can obtain 2 and 8 with probability 1/15, 3 and 7 with probability 2/15, and 4, 5 and 6 with probabilities 3/15=1/5
Step-by-step explanation:
if you really want to get answer you should follow me