Answer:
For bbff we have only 6.3% probability
Step-by-step explanation:
If the parents are heterozygous for both traits, them they are represented by:
BbFf × BbFf
Parent 1: BbFf
Parent 2: BbFf
We have to find the percentage of occurence of bb × ff, which is a child that has blue eyes and no freckles, with no dominant factor.
By distributing the possibilities in a Punnett square, <em>vide</em> picture. We have the following possibilities:
Genotype Count Percent
bBfF 4 25
BBfF 2 12.5
bBFF 2 12.5
bBff 2 12.5
bbfF 2 12.5
BBFF 1 6.3
BBff 1 6.3
bbFF 1 6.3
bbff 1 6.3
For bbff we have only 6.3% probability
I hope you understand....
Answer:
X = 3, -1; B
Step-by-step explanation:
Use log properties, log 5 on both sides, log 5 of 25 is 2 that times the exponent, so 2*x = 2x, and on the other side, log 5 and base of 5 cancels. So 2x = x^2 -3, which can be solved using factoring:
x^2 -2x -3 = (x-3)(x+1) = 0, x=3,-1
Answer:
Step-by-step explanation:
The question says,
A roulette wheel has 38 slots, of which 18 are black, 18 are red,and 2 are green. When the wheel is spun, the ball is equally likely to come to rest in any of the slots. One of the simplest wagers chooses red or black. A bet of $1 on red returns $2 if the ball lands in a red slot. Otherwise, the player loses his dollar. When gamblers bet on red or black, the two green slots belong to the house. Because the probability of winning $2 is 18/38, the mean payoff from a $1 bet is twice 18/38, or 94.7 cents. Explain what the law of large numbers tells us about what will happen if a gambler makes very many betson red.
The law of large numbers tells us that as the gambler makes many bets, they will have an average payoff of which is equivalent to 0.947.
Therefore, if the gambler makes n bets of $1, and as the n grows/increase large, they will have only $0.947*n out of the original $n.
That is as n increases the gamblers will get $0.947 in n places
More generally, as the gambler makes a large number of bets on red, they will lose money.
Break down the words into an equation:
(x+7)/(x+3) + (x-4)/3