Answer:
Step-by-step explanation:
Given that a statistician selected a random sample of 125 observations from a population with a known standard deviation equal to 16 and computed a sample mean equal to 77
We can use Z critical values since population std deviation is known. Also sample size >30
We find std error of mean = 
Margin of error = Z critical value * 1.4311
Z critical values for 93% = 1.81
for 89% = 1.60
n	Std error	Z critical  Conf interval  
             89%    
      
125	1.4311     1.6  (74.71024	79.28976
)
      
      
           93%    
             1.81  (74.409709	79.590291
)
We find that when confidence level increases interval width increses.
c) When sigma changes to 441, std error changes to 
So we get 
n	Std error	Z critical  Conf interval  
            89%    
      
441  0.7619     1.6  (75.781	78.219
)
      
      
          93%    
            1.81  (75.621	78.37904)
d) When n = 625, std error changes to 16/25 = 0.64
n	Std error	Z critical  Conf interval  
         89%    
      
441	0.64	1.6        (75.976	78.024
)
      
      
        93%    
         1.81      (75.842	78.1584)
When sample size increases, confidence interval width decreases.