Answer:
2 students study none of the subjects.
Step-by-step explanation:
Consider the attached venn diagram. First, we place that 1 student studies the three subjects. Then, we notice that 3 students study math and science, then 2 students study math and science only, since we have 1 that studies the three subjects. In the same fashion, we have that 3 students study Math and computer programming only (since they are 4 in total). Note that since 7 students study math, and we already have 6 students in our count in the math subject this implies that 1 student studies only math (the total number of students inside the math circle must add to 7).
We also have that 4 students study science and computer programming only. Which implies that we must have 3 students that study science only (10 students that study science in total) and 2 students study computer programming (for a total of 10 students). The total number of students that study none is the total number of students (18) minus the amount of students that is inside the circles (16) which is 2.
Answer:


Step-by-step explanation:
Let
. We have that
if and only if we can find scalars
such that
. This can be translated to the following equations:
1. 
2.
3. 
Which is a system of 3 equations a 2 variables. We can take two of this equations, find the solutions for
and check if the third equationd is fulfilled.
Case (2,6,6)
Using equations 1 and 2 we get


whose unique solutions are
, but note that for this values, the third equation doesn't hold (3+2 = 5
6). So this vector is not in the generated space of u and v.
Case (-9,-2,5)
Using equations 1 and 2 we get


whose unique solutions are
. Note that in this case, the third equation holds, since 3(3)+2(-2)=5. So this vector is in the generated space of u and v.
The value of
is
if the remainder of
is 2.
Further Explanation:
Given:
The remainder of
is 2.
Explanation:
The sum of imaginary numbers and real numbers is known as the complex number.
The complex number can be expressed as follows,

Here, a is the real part of the complex number and
is the imaginary part of the complex number.
can be denoted by i.
The value of
is -1.

The value
can be obtained as follows,

The value
can be obtained as follows,

The value of
is
if the remainder of
is
.
Learn more:
- Learn more about inverse of the functionhttps://brainly.com/question/1632445.
- Learn more about equation of circle brainly.com/question/1506955.
- Learn more about range and domain of the function brainly.com/question/3412497
Answer details:
Grade: Middle School
Subject: Mathematics
Chapter: Complex numbers
Keywords: value,
, remainder, n/4, 2 quotient, divisor, complex number, imaginary number, real number, exponents, dividend, powers, -1, imaginary roots.