Answer:
57
Step-by-step explanation:
Straight line value=180
Given Value=123
Value of ∆TKL
=180-123
=57(Ans)
Answer:
Step-by-step explanation:
Given a function
, we called the rate of change to the number that represents the increase or decrease that the function experiences when increasing the independent variable from one value "
" to another "
".
The rate of change of
between
and
can be calculated as follows:

For:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

And for:

Let's find
and
, where:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

So:

<em>Translation:</em>
Dada una función
, llamábamos tasa de variación al número que representa el aumento o disminución que experimenta la función al aumentar la variable independiente de un valor "
" a otro "
".
La tasa de variación de
entre
y
, puede ser calculada de la siguiente forma:

Para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:

Y para:

Encontremos
y
, donde:
![[x_1,x_2]=[-4,3]](https://tex.z-dn.net/?f=%5Bx_1%2Cx_2%5D%3D%5B-4%2C3%5D)

Entonces:

Let "a" and "b" represent the values of the first and second purchases, respectively.
0.40*(original price of "a") = $10
(original price of "a") = $10/0.40 = $25.00 . . . . divide by 0.40 and evaluate
a = (original price of "a") - $10 . . . . . . Julia paid the price after the discount
a = $25.00 -10.00 = $15.00
At the other store,
$29 = 0.58b
$29/0.58 = b = $50 . . . . . . . divide by the coefficient of b and evaluate
Then Julia's total spending is
a + b = $15.00 +50.00 = $65.00
Julia spent $65 in all at the two stores.
Answer:
70
Step-by-step explanation:
well you know that angles in the same segment are equal so angle VWZ also= 38
triangle VWZ is a triangle so the sum of interior angles sums to 180
180-72-38=70