Here we have to draw the four isomers of the compound 3-bromo-4-fluorohexane.
The four isomers of the compound is shown in the figure.
In an organic molecule the chiral -C center is that where four (4) different groups are present. In 3-bromo-4-fluorohexane the 3 and 4 positions are chiral centers. The possible isomers of a molecule can be obtained from the formula 2n. As here 2 chiral centers are present thus number of stereoisomers will be 2×2 = 4.
The four different isomers as shown in the figure are 3R-, 4R-; 3S-, 4S; 3R, 4S and 3S-, 4R- 3-bromo-4-fluorohexane.
In the 3-bromo-4-fluorohexane the functional groups are -Br, C₂H₅, -C₃H₆F and -H for 3-position and -F, -C₂H₅, -C₃H₆ and -H for 4-position respectively.
The priority of the -3 position will be Br > C₃H₆F > C₂H₅ > H and for -4 position F > C₃H₆Br > C₂H₅ > H. If the rotation from the higher priority group to lower is clockwise and anticlockwise then the S- and R- notation are used respectively. However if the -H atom is present at the horizontal position then the notation will be reverse.
Thus the four isomers of the compound is shown.
Answer:
B) exothermic.
Explanation:
Hello!
In this case, we need to keep in mind that exothermic reactions release heat, so they increase the temperature as the final energy is less than the initial energy; in contrast, endothermic reactions absorb heat, so they decrease the temperature as the final energy is greater than the initial energy.
In such a way, when a dissolution process shows off a negative enthalpy of dissolution, we infer it is an exothermic process due to the aforementioned; therefore, the answer is:
B) exothermic
.
Best regards!
Answer:
C2H3Br + O2 → CO2 + H2O + HBr
Explanation:
The term balancing of chemical reaction equation has a unique meaning in chemistry. What it actually means is to ensure that the number of atoms of each element on the left hand side of reaction equation becomes equal to the number of atoms of the same element on the right hand side of the reaction equation.
When we look at the equation; C2H3Br + O2 → CO2 + H2O + HBr, the number of atoms of each element on the left and right hand sides of the given equation are not the same hence the equation is unbalanced.
If we look at the equation; 2C2H3Br + 5O2 → 4CO2 + 2H2O + 2HBr, the number of atoms of each element on both sides of the reaction equation are now equal, thus the later equation is the balanced version of the former.
Answer: 300g
Explanation:
first we write the given values on top
224L. x
3 NO2 (g) + H2O (l) = 2HNO3 (l) + NO (g)
22.4L 30g
then we form a formula
224L/22.4L= x/30g
224*30/22.4
6720/22.4= 300g