Answer: Option d.)
R_eq = (1/R_1 + 1/R_2 + 1/R_3)^-1
Explanation:
Since, there are three resistors connected in parallel, the reciprocal of the total resistance of the resistor combination (R_eq) is obtained by adding the reciprocal of each resistance.
i.e 1/R_eq = (1/R_1 + 1/R_2 + 1/R_3)
So, R_eq = (1/R_1 + 1/R_2 + 1/R_3)^-1
Thus, the total resistance (R_eq) is equal to the inverse of the sum of the reciprocal of each resistance.
Answer:
1.97 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²

Solving the above equation we get

So, the time the package was in the air is 1.97 seconds
Answer:
force and leverage distance
Explanation:
the formula for torque if = force x distance
(the distance above is the leverage distance on the crow bar)
therefore if there is an increase in either the torque or the leverage distance, or both, the torque exerted by the crow bar also increases.
for example
- lets assume a force of 5 n is applied on the crow bar with a leverage distance of 2 m.
the torque = 5 x 2 = 10 N.m
- but if the force was increased to 7 N
torque = 7 x 2 = 12 N.m
from the illustration above, we can see that the torque increased with an increase in force. There would also be an increase in torque if the distance were to be increased.
Answer:
a) 
b) 
c) 
d) 
Explanation:
a) The initial vertical velocity is given by:

Where:
θ: 25°
v: is the magnitude of the speed = 23 m/s

b) The initial horizontal velocity can be calculated as follows:

c) The flight time can be calculated using the following equation:

Where:
x: is the total distance = 42 m

d) The maximum height is given by:
Where:
: is the final vertical velocity =0 (at the maximum heigth)
g: is the gravity = 9.81 m/s²
I hope it helps you!