Okay so I think you go south now give me ma points
the second one.
Step-by-step explanation:
sjisidjdododpdpddod
Two figures that have the same shape are said to be similar. When two figures are similar, the ratios of the lengths of their corresponding sides are equal. To determine if the triangles below are similar, compare their corresponding sides.
Answer:
10 and 15
Step-by-step explanation:
Let 'x' and 'y' are the numbers we need to find.
x + y = 25 (two numbers whose sum is 25)
(1/x) + (1/y) = 1/6 (the sum of whose reciprocals is 1/6)
The solutions of the this system of equations are the numbers we need to find.
x = 25 - y
1/(25 - y) + 1/y = 1/6 multiply both sides by 6(25-y)y
6y + 6(25-y) = (25-y)y
6y + 150 - 6y = 25y - (y^2)
y^2 - 25y + 150 = 0 quadratic equation has 2 solutions
y1 = 15
y2 = 10
Thus we have
:
First solution: for y = 15, x = 25 - 15 = 10
Second solution: for y = 10, x = 25 - 10 = 15
The first and the second solution are in fact the same one solution we are looking for: the two numbers are 10 and 15 (since the combination 10 and 15 is the same as 15 and 10).