Mv^2 = const
<span>m ~ 1/v^2 </span>
<span>(4.5/10.1)^2 = 0.198 </span>
<span>20.2 * 0.198 = 4.0 g/mol (Helium)</span>
A.glucose is a product of the photosynthesis reaction carbon dioxide is a reactant.
Litmus paper is often used to determine the range of pH of an aqueous solution. Litmus paper specifically contains 10-15 natural dyes, in the presence of acidic solution it turns red, it turns purple when the solution is neutral and blue when dealing with basic solutions. Red litmus paper stays red for a neutral and acidic solution but changes to blue in the presence of alkaline solutions. On the other hand, blue litmus paper turns red when a solution is acidic but stays blue for neutral and alkaline solutions. Since the paper turns purple in the presence of solution 1 we know that is neutral, meanwhile, since it turns blue for the second solution we know that solution II is a base correct answer is C
Answer:
They need to use energy from other tress to survive so that they can do basic functions, like absorbing nutrients from the ground, and growing back leaves. They don't have chlorophyll, so they need that energy to do the functions I mentioned above.
Explanation: Hope this helps!
This problem could be solved easily using the Henderson-Hasselbach equation used for preparing buffer solutions. The equation is written below:
pH = pKa + log[(salt/acid]
Where salt represents the molarity of salt (sodium lactate), while acid is the molarity of acid (lactic acid).
Moles of salt = 1 mol/L * 25 mL * 1 L/1000 mL = 0.025 moles salt
Moles of acid = 1 mol/L* 60 mL * 1 L/1000 mL = 0.06 moles acid
Total Volume = (25 mL + 60 mL)*(1 L/1000 mL) = 0.085 L
Molarity of salt = 0.025 mol/0.085 L = 0.29412 M
Molarity of acid = 0.06 mol/0.085 L = 0.70588 M
Thus,
pH = 3.86 + log(0.29412/0.70588)
pH = 3.48