Note: The height of the room must be 3 m instead of 3 cm because 3 cm is too small and it cannot be the height of a room.
Given:
Perimeter of the floor of a room = 18 metre
Height of the room = 3 metre
To find:
The area of 4 walls of the room.
Solution:
We know that, the area of 4 walls of the room is the curved surface area of the cuboid room.
The curved surface area of the cuboid is

Where, h is height, l is length and b is breadth.
Perimeter of the rectangular base is 2(l+b). So,

Putting the given values, we get


Therefore, the area of 4 walls of the room is 54 sq. metres.
you dont use the distributive property
(8x-1)(7x-1)
then you foil it and combine like terms
Since we don't have a figure we'll assume one of them is right and we're just being asked to check if they're the same number. I like writing polar coordinates with a P in front to remind me.
It's surely false if that's really a 3π/7; I'll guess that's a typo that's really 3π/4.
P(6√2, 7π/4) = ( 6√2 cos 7π/4, 6√2 sin 7π/4 )
P(-6√2, 3π/4) = ( -6√2 cos 3π/4, -6√2 sin 3π/4 )
That's true since when we add pi to an angle it negates both the sine and the cosine,
cos(7π/4) = cos(π + 3π/4) = -cos(3π/4)
sin(7π/4) = sin(π + 3π/4) = -sin(3π/4)
Answer: TRUE
Answer:
y = 1/2x
Step-by-step explanation:
x - 2y = -4
x = -4 + 2y
x + 4 = 2y
2y = x + 4
y = 1/2x + 2
y = 1/2x