When a layer of cold air close to the ground is covered by a layer of warmer air, sound waves traveling upward may be bent, or refracted, by the difference in temperature and redirected toward the ground.
The spectrum of light from the moon should very strongly resemble the spectrum of sunlight. The reason is that any light from the moon started out from the sun. Any difference in their spectra is only due to the moon absorbing more of some wavelengths and less of others. But since the moon appears colorless gray, we don't expect any particular colors to be strongly absorbed, otherwise the moon would look to be the colors of the light that's left.
Answer:
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
<em />
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
Explanation:
<h2>
<u><em>HOPE THIS HELPS</em></u></h2>
Potential energy is energy stored due to its position. Thermal energy is energy released as heat
Answer:
Since binary is only 1 and 0, you can use a flashlight to display something similar to Morse code (see explanation below)
Explanation:
In binary, 1 means "on" and 0 means "off". A way you can use visible light is through turning on and off a flashlight. If the flashlight is turned on, it would represent a 1. If the flashlight is turned off, it would represent a 0. To make the message easier and more accurately understood for the receiver make sure to flash the lights in a consistent pattern (ex. each flash lasts no longer than half a second, one second between each digit, etc.)
For example, let's say you're trying to send the message "11001"
on on off off on
0 1 2 3 4 5 <em>Numbers represent seconds</em>
As you can see above the message starts at 0 seconds. Between 0 and 1 seconds the flashlight is turned on once. Between 1 and 2 seconds the flashlight is turned on again, Between 2 and 3 seconds as well as 3 and 4 seconds the flashlight is not turned on at all. And finally between 4 and 5 seconds the flashlight is turned on.