Answer:
Part a)

Part b)

Explanation:
As the uniform sphere is rolling down the inclined plane then the net force on the sphere is given as

also we have torque equation on it

for pure rolling


now we have

now we have


now given that

so we have



Part b)
If the inclined plane is frictionless then the acceleration is given as



Answer:
h = 9.83 cm
Explanation:
Let's analyze this interesting exercise a bit, let's start by comparing the density of the ball with that of water
let's reduce the magnitudes to the SI system
r = 10 cm = 0.10 m
m = 10 g = 0.010 kg
A = 100 cm² = 0.01 m²
the definition of density is
ρ = m / V
the volume of a sphere
V =
V =
π 0.1³
V = 4.189 10⁻³ m³
let's calculate the density of the ball
ρ =
ρ = 2.387 kg / m³
the tabulated density of water is
ρ_water = 997 kg / m³
we can see that the density of the body is less than the density of water. Consequently the body floats in the water, therefore the water level that rises corresponds to the submerged part of the body. Let's write the equilibrium equation
B - W = 0
B = W
where B is the thrust that is given by Archimedes' principle
ρ_liquid g V_submerged = m g
V_submerged = m / ρ_liquid
we calculate
V _submerged = 0.10 9.8 / 997
V_submerged = 9.83 10⁻⁴ m³
The volume increassed of the water container
V = A h
h = V / A
let's calculate
h = 9.83 10⁻⁴ / 0.01
h = 0.0983 m
this is equal to h = 9.83 cm
The first one would be thermal energy
Answer:
The bullet's initial speed is 243.21 m/s.
Explanation:
Given that,
Mass of the bullet, 
Mass of the pendulum, 
The center of mass of the pendulum rises a vertical distance of 10 cm.
We need to find the bullet's initial speed if it is assumed that the bullet remains embedded in the pendulum. Let it is v. In this case, the energy of the system remains conserved. The kinetic energy of the bullet gets converted to potential energy for the whole system. So,
V is the speed of the bullet and pendulum at the time of collision
Now using conservation of momentum as :
Put the value of V from equation (1) in above equation as :

So, the bullet's initial speed is 243.21 m/s.