Answer: The bug will remain motionless
Explanation:
According to Newton's first Law of Motion (sometimes called Law of Inertia):
<em>An object at rest or describing a uniform straight line motion (moving at constant velocity), will remain at rest or moving unless an external force is applied to it and changes its state of rest or motion.
</em>
In other words:
An object or body will keep its state of motion until an external force changes its state
This means that objects tend to remain in its state of motion, and is the definition of the inertia, as well.
In addition, according to his law, an object in rest can be in equilibrium (net force equals to zero), and a moving object can also be in equilibrium, as long as it keeps a constant velocity.
<h2>
This is why the bug, which is at rest will remain at rest, although the ants are simultaneously pulling it in different directions, since the resultant of all these forces is zero.</h2>
This is a concept of momentum. In equation, momentum is the product of force and distance. When a ball is thrown, its force is constant all throughout unless disturbed by an external force. Therefore, force is the constant of proportionality that relates momentum with distance. When you block a ball from a given distance, you would feel the great force on your hand. In order to reduce the force, you have to follow the direction of the force in order to minimize the impact. By doing this, you gradually decrease the momentum of the ball.
I'm sure you've noticed that an airplane high in the sky, far away
from you, looks like it's moving very slowly. At the same time,
somebody passing you on a skateboard whizzes past you at
high speed. The farther away something is from you, the slower
it appears to move.
The nearest star outside the solar system is almost 32 thousand times
as far away from us as the farthest visible planet (Saturn) is, and all of the
other stars are farther than that.
That's why you have to wait a few thousand years before you notice
that the shape of a constellation has changed.
To put it a slightly different way . . . Everything is in motion. The motion is
more noticeable for nearby things, and less noticeable for farther-away things.
Objects within our solar system are the only ones near enough so that a human
lifetime is a long enough period in which to notice the change in their position.
Even Pluto moves less then 1.5° against the 'background' stars in a whole year.
This all makes me feel small. How about you ?
There are two particular cases, the first is when Object A is attracted to the neutral wall. This would indicate that the object is not neutral, as there is an attraction.
At the same time we know that Object A is attracted to an object B. And therefore, the load of A must be opposite to that of B. Remember that opposite charges attract each other. If the charge of object B is positive, then the charge of object A will be negative.
Option B is correct: It has a negative charge.
Lift force exerted by the air on the rotors=143244 N
Explanation:
we use Newtons second law
F- (M+m)g=(M+m)a
F= lift force
m= mass of helicopter= 13000 Kg
M= mass of car= 2000 lb=907.2 kg
a= acceleration= 0.5 m/s²
g= acceleration due to gravity
F- (M+m)g=(M+m)a
F=(M+m)(a+g)
F=(13000+907.2)(0.5+9.8)
F=143244 N