Fuel cells can make an electricity from a simple electrochemical
reaction in which oxygen and hydrogen combine to form water. There are several
different types of fuel cell but they are all based around a central design
which consists of two electrodes, a negative anode and a positive cathode.
These are separated by a solid or liquid electrolyte that carries electrically
charged particles between the two electrodes. A catalyst, such as platinum, is
often used to speed up the reactions at the electrodes. Fuel cells are
classified according to the nature of the electrolyte. Every type needs
particular materials and fuels and is suitable for any applications. The
article below uses the proton exchange membrane fuel cell to illustrate the
science and technology behind the fuel cell concept but the characteristics and
applications of the other main designs are also discussed. Proton Exchange Membrane Fuel Cells (PEMFC)
The hydrogen ions permeate across the electrolyte to the
cathode, while the electrons flow through an external circuit and provide
power. Oxygen, in the form of air, is supplied to the cathode and this combines
with the electrons and the hydrogen ions to produce water. These reactions at
the electrodes are as follows:
Anode: 2H24H+ + 4e-
Cathode: O2 + 4H+ + 4e- 2H2O
Overall: 2H2 + O22H2O + energy
PEM cells operate at a temperature of around 80°C. At this
low temperature the electrochemical reactions would normally occur very slowly
so they are catalysed by a thin layer of platinum on each electrode.
Answer:
The answer is below
Explanation:
The possible phenotypes of the mother can be any of the following
AA - A phenotype
AB - AB phenotype (here the mother must have contributed an A gene for it to be possible)
AO - A phenotype (here the mother may have contributed any of the A or O gene.)
BO - B phenotype (here, the mother would only need to contribute O gene for this to be possible)
They all have instruments to "uncouple" oxidative phosphorylation from electron transport framework by giving an option system to protons to come back to the mitochondrial grid. As protons enter the lattice without going through ATP synthase, their vitality is discharged as warmth. So these produce warm by uncoupling those two procedures.
Clues such as fossils such as bones, footprints, tar, etc, preserved underground helped inform scientists. You can also count how old a tree is when you cut it open and there are some alive for thousands of years so that is a possible way.
The Correct answer would be e. Mutate; are selected; evolve