0.1111 if you want it as a decimal
We want to find the values of a, b, c, and d such that the given matrix product is equal to a 2x2 identity matrix. We will solve a system of equations to find:
<h3>
Presenting the equation:</h3>
Basically, we want to solve:
![\left[\begin{array}{cc}-1&2\\a&1\end{array}\right]*\left[\begin{array}{cc}b&c\\1&d\end{array}\right] = \left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5Ca%261%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Db%26c%5C%5C1%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
The matrix product will be:
![\left[\begin{array}{cc}-b + 2&-c + 2d\\a*b + 1&a*c + d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-b%20%2B%202%26-c%20%2B%202d%5C%5Ca%2Ab%20%2B%201%26a%2Ac%20%2B%20d%5Cend%7Barray%7D%5Cright%5D)
Then we must have:
-b + 2 = 1
This means that:
b = 2 - 1 = 1
We also need to have:
a*b + 1 = 0
we know the value of b, so we just have:
a*1 + b = 0
Now the two remaining equations are:
-c + 2d = 0
a*c + d = 1
Replacing the value of a we get:
-c + 2d = 0
-c + d = 1
Isolating c in the first equation we get:
c = 2d
Replacing that in the other equation we get:
-(2d) + d = 1
-d = 1
Then:
c = 2d = 2*(-1) = -2
So the values are:
If you want to learn more about systems of equations, you can read:
brainly.com/question/13729904
Answer:
she had $60 before she went for shopping
Step-by-step explanation:
PLZ MARK BRAINLIEST
Let x represent the amount of money that Victoria had before she went for shopping.
Victoria spent one-fourth or her birthday money on clothes. It means that the amount she spent on shopping is 1/4 × x = x/4. Amount that she was having left would be x - x/4 = 3x/4
She received another 25$ a week later. The amount that she is having at this point will be 3x/4 + 25
If she has a total of 70$ now, it means that
3x/4 + 25 = 70
Multiplying through by 4
3x + 100 = 280
3x ,= 280 - 100 = 180
x = 180/3 = 60
Answer:
In order to have ran 33 miles, Bobby would have to attend <em>32 track practices.</em>
Step-by-step explanation:
Solving this problem entails of uncovering the amount of track practices Bobby must attend in order to have ran 33 miles. Start by reading the problem carefully to break down the information provided.
You can see that Bobby has already ran one mile on his own. This is important to remember for later. The problem also states that he expects to run one mile at every track practice.
Setting up an equation will help us solve. Here is how we could set up the equation:
(<em>amount of miles already ran</em> = 1) + (<em>number of track practices</em> = x) = (<em>total miles to run</em> = 33)
1 + x = 33
The equation is now in place. You can solve this, or isolate <em>'x',</em> by using the subtraction property of equality. This means we will subtract one from both sides of the equation, thus isolating the variable.
1 + x = 33
1 - 1 + x = 33 - 1
x = 32
The variable is the only term left on the left side of the equation. This means Bobby must attend track practice <em>32 times</em> in order to have ran 33 miles.